Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Raquel Bedani is active.

Publication


Featured researches published by Raquel Bedani.


British Journal of Nutrition | 2015

Scientific evidence for health effects attributed to the consumption of probiotics and prebiotics: an update for current perspectives and future challenges.

Rafael Chacon Ruiz Martinez; Raquel Bedani; Susana Marta Isay Saad

Probiotics and prebiotics, mainly commercialised as food ingredients and also as supplements, are considered highly profitable niche markets. However, in recent years, the food industry has suffered from a series of health claim restrictions on probiotics and prebiotics in many parts of the world, including those made by the European Food Safety Authority. Therefore, we reviewed the core benefits of probiotic and prebiotic consumption on health. A number of studies have examined the prevention and/or management of intestinal infections, respiratory tract infections, CVD, osteoporosis, urogenital infections, cavities, periodontal disease and halitosis, allergic reactions, inflammatory bowel disease and irritable bowel syndrome and Helicobacter pylori gastric infections. In fact, a deeper understanding of the mechanisms involved in human microbiota and immune system modulation by probiotics and prebiotics relies on continuous efforts to establish suitable biomarkers of health and diseases risk factors for the design of clinical trials required for health claim approval. In spite of the promising results, the performance of large, long-term, well-planned, well-aligned clinical studies is crucial to provide more reliability and a more solid basis for the outcomes achieved and to support the potential use of probiotics and prebiotics in clinical practice.


Journal of the Science of Food and Agriculture | 2014

Incorporation of soybean by-product okara and inulin in a probiotic soy yoghurt: texture profile and sensory acceptance

Raquel Bedani; Marina M. S. Campos; Inar Alves de Castro; Elizeu Antonio Rossi; Susana Marta Isay Saad

BACKGROUND This study evaluated the effect of inulin and okara flour on textural and sensory properties of probiotic soy yoghurt (SY) throughout 28 days of storage at 4 °C. Employing a 2(2) design, four formulations of SY produced from soymilk and fermented with an ABT-4 culture (Lactobacillus acidophilus La-5, Bifidobacterium animalis Bb-12 and Streptococcus thermophilus) were studied: SY-C (control); SY-I (with inulin); SY-O (with okara); SY-IO (with inulin + okara). RESULTS The addition of okara and the refrigerated storage led to significant differences in the instrumental texture parameters of SY (P < 0.05). Inulin and okara did not affect SY sensory acceptability (P > 0.05), but there was a tendency for higher scores in the presence of inulin. On the other hand, the storage period, particularly at 21 days, was unfavourable regarding the acceptance of the different SY. CONCLUSION The results showed that the addition of okara flour and the storage were significant factors to increase firmness of the soy yoghurts. SY acceptability was not affected by the incorporation of inulin or okara. These results suggest that okara, discarded as industrial waste, may be used in probiotic soy yoghurt, helping to increase the nutritional and functional properties without altering its acceptability.


Nutrients | 2016

Probiotic Soy Product Supplemented with Isoflavones Improves the Lipid Profile of Moderately Hypercholesterolemic Men: A Randomized Controlled Trial

Daniela Cardoso Umbelino Cavallini; Marla Simone Jovenasso Manzoni; Raquel Bedani; Mariana Nougalli Roselino; Larissa Sbaglia Celiberto; Regina Célia Vendramini; Graciela Font de Valdez; Dulcineia Saes Parra Abdalla; Roseli Aparecida Pinto; Daniella Rosetto; Sandro Roberto Valentini; Elizeu Antonio Rossi

Background: Cardiovascular disease is the leading cause of worldwide morbidity and mortality. Several studies have demonstrated that specific probiotics affect the host’s metabolism and may influence the cardiovascular disease risk. Objectives: The aim of this study was to investigate the influence of an isoflavone-supplemented soy product fermented with Enterococcus faecium CRL 183 and Lactobacillus helveticus 416 on cardiovascular risk markers in moderately hypercholesterolemic subjects. Design: Randomized placebo-controlled double-blind trial Setting: São Paulo State University in Araraquara, SP, Brazil. Participants: 49 male healthy men with total cholesterol (TC) >5.17 mmol/L and <6.21 mmol/L Intervention: The volunteers have consumed 200 mL of the probiotic soy product (group SP-1010 CFU/day), isoflavone-supplemented probiotic soy product (group ISP–probiotic plus 50 mg of total isoflavones/100 g) or unfermented soy product (group USP-placebo) for 42 days in a randomized, double-blind study. Main outcome measures: Lipid profile and additional cardiovascular biomarkers were analyzed on days 0, 30 and 42. Urine samples (24 h) were collected at baseline and at the end of the experiment so as to determine the isoflavones profile. Results: After 42 days, the ISP consumption led to improved total cholesterol, non-HDL-C (LDL + IDL + VLDL cholesterol fractions) and electronegative LDL concentrations (reduction of 13.8%, 14.7% and 24.2%, respectively, p < 0.05). The ISP and SP have prevented the reduction of HDL-C level after 42 days. The C-reactive protein and fibrinogen levels were not improved. The equol production by the ISP group subjects was inversely correlated with electronegative LDL concentration. Conclusions: The results suggest that a regular consumption of this probiotic soy product, supplemented with isoflavones, could contribute to reducing the risk of cardiovascular diseases in moderately hypercholesterolemic men, through the an improvement in lipid profile and antioxidant properties.


International Journal of Food Microbiology | 2016

In vitro gastrointestinal resistance of Lactobacillus acidophilus La-5 and Bifidobacterium animalis Bb-12 in soy and/or milk-based synbiotic apple ice creams.

Natalia Silva Matias; Marina Padilha; Raquel Bedani; Susana Marta Isay Saad

The viability and resistance to simulated gastrointestinal (GI) conditions of Lactobacillus acidophilus La-5 and Bifidobacterium animalis Bb-12 in synbiotic ice creams, in which milk was replaced by soy extract and/or whey protein isolate (WPI) with inulin, were investigated. The ice creams were showed to be satisfactory vehicles for La-5 and Bb-12 (populations around 7.5logCFU/g), even after the whole storage period (84days/-18°C). In all formulations, the propidium monoazide qPCR (PMA-qPCR) analysis demonstrated that probiotics could resist the in vitro GI assay, with significant survival levels, achieving survival rates exceeding 50%. Additionally, scanning electron microscopy images evidenced cells with morphological differences, suggesting physiological changes in response to the induced stress during the in vitro assay. Although all formulations provided resistance to the probiotic strains under GI stress, the variation found in probiotic survival suggests that GI tolerance is indeed affected by the choice of the food matrix.


Critical Reviews in Food Science and Nutrition | 2015

Probiotics: The scientific evidence in the context of inflammatory bowel disease

Larissa Sbaglia Celiberto; Raquel Bedani; Elizeu Antonio Rossi; Daniela Cardoso Umbelino Cavallini

abstract Inflammatory bowel disease (IBD) generally comprises Crohns disease (CD) and ulcerative colitis (UC), and their main characteristic is the intestinal mucosa inflammation. Although its origin is not yet fully known, there is growing evidence related to genetics, intestinal microbiota composition, and the immune system factors such as precursors for the initiation and progression of intestinal conditions. The use of certain probiotic microorganisms has been touted as a possible and promising therapeutic approach in reducing the risk of inflammatory bowel disease, specifically ulcerative colitis. Several mechanisms have been proposed to explain the benefits of probiotics, indicating that some bacterial strains are able to positively modulate the intestinal microbiota and the immune system, and to produce metabolites with anti-inflammatory properties. The aim of this paper is to bring together the various results and information, based on scientific evidence, that are related to probiotics and inflammatory bowel disease, emphasizing the possible mechanisms involved in this action.


Archive | 2013

Probiotics and Intestinal Microbiota: Implications in Colon Cancer Prevention

Katia Sivieri; Raquel Bedani; Daniela Cardoso Umbelino Cavallini; Elizeu Antonio Rossi

Colon cancer (CC) is one of the commonest causes of death among all types of cancers [1]. The development of cancer is a multifactorial process influenced by genetic, physiological, and environmental factors [2,3]. Regarding environmental factors, the lifestyle, particularly dietary intake, may affect the risk of CC developing [1,4]. Western diet, rich in animal fat and poor in fiber, is generally associated with an increased risk of colon cancer [5,6,7]. Thus, it has been hypothesized that the connection between the diet and CC, may be the influence that the diet has on the colon microbiota and bacterial metabolism, making both relevant factors in the etiology of the disease [8,9]. Additionally, it has been clearly demonstrated that the gut microbiota may be modulated by many factors including diet [10].


International Journal of Food Microbiology | 2016

Supplementation with fruit and okara soybean by-products and amaranth flour increases the folate production by starter and probiotic cultures

Marcela Albuquerque Cavalcanti de Albuquerque; Raquel Bedani; A. D. S. Vieira; Jean Guy LeBlanc; Susana Marta Isay Saad

The ability of two starter cultures (Streptococcus (S.) thermophilus ST-M6 and St. thermophilus TA-40) and eleven probiotic cultures (St. thermophilus TH-4, Lactobacillus (Lb.) acidophilus LA-5, Lb. fermentum PCC, Lb. reuteri RC-14, Lb. paracasei subsp. paracasei, Lb. casei 431, Lb. paracasei subsp. paracasei F19, Lb. rhamnosus GR-1, and Lb. rhamnosus LGG, Bifidobacterium (B.) animalis subsp. lactis BB-12, B. longum subsp. longum BB-46, and B. longum subsp. infantis BB-02) to produce folate in a modified MRS broth (mMRS) supplemented with different fruit (passion fruit, acerola, orange, and mango) and okara soybean by-products and amaranth flour was investigated. Initially, the folate content of each vegetable substrate was determined: passion fruit by-product showed the lowest folate content (8±2ng/mL) and okara the highest (457±22ng/mL). When the orange by-product and amaranth flour were added to mMRS, all strains were able to increase folate production after 24h of fermentation. B. longum subsp infantis BB-02 produced the highest concentrations (1223±116ng/mL) in amaranth flour. Okara was the substrate that had the lowest impact on the folate production by all strains evaluated. Lb. acidophilus LA-5 (297±36ng/mL) and B. animalis subsp. lactis BB-12 (237±23ng/mL) were also able to produce folate after growth in mMRS containing acerola and orange by-products, respectively. The results of this study demonstrate that folate production is not only strain-dependent but also influenced by the addition of different substrates in the growth media.


PLOS ONE | 2017

Effect of a probiotic beverage consumption (Enterococcus faecium CRL 183 and Bifidobacterium longum ATCC 15707) in rats with chemically induced colitis

Larissa Sbaglia Celiberto; Raquel Bedani; Naiara Naiana Dejani; Alexandra I. Medeiros; José A. Zuanon; Luis Carlos Spolidório; Maria Angela Tallarico Adorno; Maria Bernadete Amâncio Varesche; Fábio Carrilho Galvão; Sandro Roberto Valentini; Graciela Font de Valdez; Elizeu Antonio Rossi; Daniela Cardoso Umbelino Cavallini

Background Some probiotic strains have the potential to assist in relieving the symptoms of inflammatory bowel disease. The impact of daily ingestion of a soy-based product fermented by Enterococcus faecium CRL 183 and Lactobacillus helveticus 416 with the addition of Bifidobacterium longum ATCC 15707 on chemically induced colitis has been investigated thereof within a period of 30 days. Methods Colitis was induced by dextran sulfate sodium. The animals were randomly assigned into five groups: Group C: negative control; Group CL: positive control; Group CLF: DSS with the fermented product; Group CLP: DSS with the non-fermented product (placebo); Group CLS: DSS with sulfasalazine. The following parameters were monitored: disease activity index, fecal microbial analyses, gastrointestinal survival of probiotic microorganisms and short-chain fatty acids concentration in the feces. At the end of the protocol the animals’ colons were removed so as to conduct a macroscopical and histopathological analysis, cytokines and nitrite quantification. Results Animals belonging to the CLF group showed fewer symptoms of colitis during the induction period and a lower degree of inflammation and ulceration in their colon compared to the CL, CLS and CLP groups (p<0.05). The colon of the animals in groups CL and CLS presented severe crypt damage, which was absent in CLF and CLP groups. A significant increase in the population of Lactobacillus spp. and Bifidobacterium spp. at the end of the protocol was verified only in the CLF animals (p<0.05). This group also showed an increase in short-chain fatty acids (propionate and acetate). Furthermore, the intestinal survival of E. faecium CRL 183 and B. longum ATCC 15707 in the CLF group has been confirmed by biochemical and molecular analyzes. Conclusions The obtained results suggest that a regular intake of the probiotic product, and placebo to a lesser extent, can reduce the severity of DSS-induced colitis on rats.


International Journal of Food Microbiology | 2017

Passion fruit by-product and fructooligosaccharides stimulate the growth and folate production by starter and probiotic cultures in fermented soymilk

Marcela Albuquerque Cavalcanti de Albuquerque; Raquel Bedani; Jean Guy LeBlanc; Susana Marta Isay Saad

Two starter cultures (Streptococcus (St.) thermophilus ST-M6 and TA-40) and five probiotic strains (St. thermophilus TH-4, Lactobacillus (Lb.) acidophilus LA-5, Lb. rhamnosus LGG, Lb. fermentum PCC, and Lb. reuteri RC-14) were used to ferment different soymilk formulations supplemented with passion fruit by-product and/or fructo-oligosaccharides (FOS) with the aim of increasing folate concentrations. Growth and folate production of individual strains were evaluated and the results used to select co-cultures. Both St. thermophilus ST-M6 and TH-4 were the best folate producers and were able to increase the folate content of all soymilk formulations when used alone or in co-culture with lactobacilli strains, especially in the presence of both passion fruit by-product and FOS. Thus, passion fruit by-product and FOS could be used as dietary ingredients to stimulate the folate production by selected bacterial strains during the fermentation of soymilk. It was also shown that vitamin production by microorganisms is strain-dependent and may also be influenced by nutritional and environmental conditions.


Food Research International | 2017

The impact of fruit and soybean by-products and amaranth on the growth of probiotic and starter microorganisms

A. D. S. Vieira; Raquel Bedani; Marcela Albuquerque Cavalcanti de Albuquerque; Vanessa Biscola; Susana Marta Isay Saad

The ability of different fruit by-products, okara, and amaranth flour, to support the growth of probiotic and non-probiotic strains was evaluated. The tests were conducted with three commercial starter cultures (Streptococcus thermophilus), ten probiotic strains (seven Lactobacillus spp. and three Bifidobacterium spp. strains), and two harmful bacteria representative of the intestinal microbiota (Escherichia coli and Clostridium perfringens). In vitro fermentability assays were performed using a modified MRS broth supplemented with different fruits (acerola, orange, passion fruit, and mango), and soy (okara) by-products or amaranth flour. Orange and passion-fruit by-products were the substrates that most promoted the growth of bacterial populations, including pathogenic strains. On the other hand, the acerola by-product was the substrate that showed the highest selectivity for beneficial bacteria, since the E. coli and Cl. perfringens populations were lower in the presence of this fruit by-product. Although the passion fruit by-product, okara, and amaranth stimulated the probiotic strains, the growth of the pathogenic strains studied was higher compared to other substrates. Different growth profiles were verified for each substrate when the different strains were compared. Although pure culture models do not reflect bacterial interaction in the host, this study reinforces the fact that the ability to metabolize different substrates is strain-dependent, and acerola, mango, and orange by-products are the substrates with the greatest potential to be used as prebiotic ingredients.

Collaboration


Dive into the Raquel Bedani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean Guy LeBlanc

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Graciela Font de Valdez

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge