Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Raquel Cruz is active.

Publication


Featured researches published by Raquel Cruz.


Science | 2013

Supercomplex Assembly Determines Electron Flux in the Mitochondrial Electron Transport Chain

Esther Lapuente-Brun; Raquel Moreno-Loshuertos; Rebeca Acín-Pérez; Ana Latorre-Pellicer; Carmen Colás; Eduardo Balsa; Ester Perales-Clemente; Pedro M. Quirós; Enrique Calvo; M. A. C. Rodríguez-Hernández; Plácido Navas; Raquel Cruz; Angel Carracedo; Carlos López-Otín; Acisclo Pérez-Martos; Patricio Fernández-Silva; Erika Fernandez-Vizarra; José Antonio Enríquez

Respiration Refined Cells derive energy from redox reactions mediated by mitochondrial enzymes that form the electron transport chain. The enzymes can form large complexes, known as supercomplexes, whose function has been controversial. Lapuente-Brun et al. (p. 1567) discovered that a mouse protein, supercomplex assembly factor I (SCAFI), specifically modulates assembly of respiratory complexes into supercomplexes. Formation of the supercomplexes appears to cause electrons to be processed differently, depending on the substrate from which they are derived. Ordered formation of supercomplexes of respiratory enzymes influences metabolic efficiency in response to food supply. The textbook description of mitochondrial respiratory complexes (RCs) views them as free-moving entities linked by the mobile carriers coenzyme Q (CoQ) and cytochrome c (cyt c). This model (known as the fluid model) is challenged by the proposal that all RCs except complex II can associate in supercomplexes (SCs). The proposed SCs are the respirasome (complexes I, III, and IV), complexes I and III, and complexes III and IV. The role of SCs is unclear, and their existence is debated. By genetic modulation of interactions between complexes I and III and III and IV, we show that these associations define dedicated CoQ and cyt c pools and that SC assembly is dynamic and organizes electron flux to optimize the use of available substrates.


Molecular Ecology | 2004

Nonallopatric and parallel origin of local reproductive barriers between two snail ecotypes.

Emilio Rolán-Alvarez; M. Carballo; Juan Galindo; Paloma Morán; Blanca Fernández; Armando Caballero; Raquel Cruz; Elizabeth G. Boulding; Kerstin Johannesson

Theory suggests that speciation is possible without physical isolation of populations (hereafter, nonallopatric speciation), but recent nonallopatric models need the support of irrefutable empirical examples. We collected snails (Littorina saxatilis) from three areas on the NW coast of Spain to investigate the population genetic structure of two ecotypes. Earlier studies suggest that these ecotypes may represent incipient species: a large, thick‐shelled ‘RB’ ecotype living among the barnacles in the upper intertidal zone and a small, thin‐shelled ‘SU’ ecotype living among the mussels in the lower intertidal zone only 10–30 m away. The two ecotypes overlap and hybridize in a midshore zone only 1–3 m wide. Three different types of molecular markers [allozymes, mitochondrial DNA (mtDNA) and microsatellites] consistently indicated partial reproductive isolation between the RB and the SU ecotypes at a particular site. However, each ecotype was related more closely to the other ecotype from the same site than to the same ecotype from another site further along the Galician coast (25–77 km away). These findings supported earlier results based solely on allozyme variation and we could now reject the possibility that selection produced these patterns. The patterns of genetic variation supported a nonallopatric model in which the ecotypes are formed independently at each site by parallel evolution and where the reproductive barriers are a byproduct of divergent selection for body size. We argue that neither our laboratory hybridization experiments nor our molecular data are compatible with a model based on allopatric ecotype formation, secondary overlap and introgression.


Nature | 2016

Mitochondrial and nuclear DNA matching shapes metabolism and healthy ageing

Ana Latorre-Pellicer; Raquel Moreno-Loshuertos; Ana Victoria Lechuga-Vieco; Fátima Sánchez-Cabo; Carlos Torroja; Rebeca Acín-Pérez; Enrique Calvo; Esther Aix; Andrés González-Guerra; Angela Logan; María Luisa Bernad-Miana; Eduardo Romanos; Raquel Cruz; Sara Cogliati; Beatriz Sobrino; Angel Carracedo; Acisclo Pérez-Martos; Patricio Fernández-Silva; Jesús Ruiz-Cabello; Michael P. Murphy; Ignacio Flores; Jesús Vázquez; José Antonio Enríquez

Human mitochondrial DNA (mtDNA) shows extensive within-population sequence variability. Many studies suggest that mtDNA variants may be associated with ageing or diseases, although mechanistic evidence at the molecular level is lacking. Mitochondrial replacement has the potential to prevent transmission of disease-causing oocyte mtDNA. However, extension of this technology requires a comprehensive understanding of the physiological relevance of mtDNA sequence variability and its match with the nuclear-encoded mitochondrial genes. Studies in conplastic animals allow comparison of individuals with the same nuclear genome but different mtDNA variants, and have provided both supporting and refuting evidence that mtDNA variation influences organismal physiology. However, most of these studies did not confirm the conplastic status, focused on younger animals, and did not investigate the full range of physiological and phenotypic variability likely to be influenced by mitochondria. Here we systematically characterized conplastic mice throughout their lifespan using transcriptomic, proteomic, metabolomic, biochemical, physiological and phenotyping studies. We show that mtDNA haplotype profoundly influences mitochondrial proteostasis and reactive oxygen species generation, insulin signalling, obesity, and ageing parameters including telomere shortening and mitochondrial dysfunction, resulting in profound differences in health longevity between conplastic strains.


Journal of Evolutionary Biology | 1999

Mechanisms of incomplete prezygotic reproductive isolation in an intertidal snail: testing behavioural models in wild populations

Emilio Rolán-Alvarez; Johan Erlandsson; Kerstin Johannesson; Raquel Cruz

Two morphs (ecotypes) of the marine snail Littorina saxatilis coexist along Galician exposed rocky shores. They hybridize, but gene flow is impeded by a partial prezygotic reproductive barrier, and we have earlier suggested that this is a case of incipient sympatric speciation. To assess the mechanisms of prezygotic reproductive isolation, we estimated deviations from random mating (sexual selection and sexual isolation) of sympatric snails in 13 localities on the shore, and performed mate choice experiments in the laboratory. We also investigated the microdistribution of both morphs over patches of barnacles and blue mussels in the hybridization zone. We used computer simulations to separate the mechanisms contributing to reproductive isolation.


Journal of Evolutionary Biology | 2004

Testing alternative models for sexual isolation in natural populations of Littorina saxatilis: indirect support for by-product ecological speciation?

Raquel Cruz; M. Carballo; Paula Conde-Padín; Emilio Rolán-Alvarez

Two ecotypes of the rough periwinkle Littorina saxatilis occur at different shore levels, showing assortative mating for size and partial reproductive isolation when they meet at the mid‐shore. This system represents a putative case of incomplete speciation in sympatry. Two processes contribute to the assortative mating: morph‐specific microhabitat aggregation and mate choice. The estimation of mate choice coefficients in nature and a simulation of the aggregation effects on sexual isolation were used to disentangle these processes as well as to test alternative mechanisms of mate choice. Mate choice significantly increased the frequency of within‐morph pairs and significantly decreased the frequency of between‐morph pairs, whereas those pairs including at least one hybrid morph mated randomly. These results allow us to reject a discriminant mate choice and support a model of evolution of sexual isolation as a side‐effect of size‐assortative mating in a context of divergent natural selection for size in the population. This mechanism is more compatible with a model of incomplete by‐product ecological speciation, as suggested by previous evidence.


Forensic Science International-genetics | 2013

Further development of forensic eye color predictive tests.

Y. Ruiz; C. Phillips; Antonio Gómez-Tato; José Antonio Álvarez-Dios; M. Casares de Cal; Raquel Cruz; O. Maroñas; Jens Söchtig; M. Fondevila; M.J. Rodriguez-Cid; Angel Carracedo; M.V. Lareu

In forensic analysis predictive tests for external visible characteristics (or EVCs), including inference of iris color, represent a potentially useful tool to guide criminal investigations. Two recent studies, both focused on forensic testing, have analyzed single nucleotide polymorphism (SNP) genotypes underlying common eye color variation (Mengel-From et al., Forensic Sci. Int. Genet. 4:323 and Walsh et al., Forensic Sci. Int. Genet. 5:170). Each study arrived at different recommendations for eye color predictive tests aiming to type the most closely associated SNPs, although both confirmed rs12913832 in HERC2 as the key predictor, widely recognized as the most strongly associated marker with blue and brown iris colors. Differences between these two studies in identification of other eye color predictors may partly arise from varying approaches to assigning phenotypes, notably those not unequivocally blue or dark brown and therefore occupying an intermediate iris color continuum. We have developed two single base extension assays typing 37 SNPs in pigmentation-associated genes to study SNP-genotype based prediction of eye, skin, and hair color variation. These assays were used to test the performance of different sets of eye color predictors in 416 subjects from six populations of north and south Europe. The presence of a complex and continuous range of intermediate phenotypes distinct from blue and brown eye colors was confirmed by establishing eye color populations compared to genetic clusters defined using Structure software. Our study explored the effect of an expanded SNP combination beyond six markers has on the ability to predict eye color in a forensic test without extending the SNP assay excessively - thus maintaining a balance between the tests predictive value and an ability to reliably type challenging DNA with a multiplex of manageable size. Our evaluation used AUC analysis (area under the receiver operating characteristic curves) and naïve Bayesian likelihood-based classification approaches. To provide flexibility in SNP-based eye color predictive tests in forensic applications we modified an online Bayesian classifier, originally developed for genetic ancestry analysis, to provide a straightforward system to assign eye color likelihoods from a SNP profile combining additional informative markers from the predictors analyzed by our study plus those of Walsh and Mengel-From. Two advantages of the online classifier is the ability to submit incomplete SNP profiles, a common occurrence when typing challenging DNA, and the ability to handle physically linked SNPs showing independent effect, by allowing the user to input frequencies from SNP pairs or larger combinations. This system was used to include the submission of frequency data for the SNP pair rs12913832 and rs1129038: indicated by our study to be the two SNPs most closely associated to eye color.


Journal of Evolutionary Biology | 2001

Sexual selection on phenotypic traits in a hybrid zone of Littorina saxatilis (Olivi)

Raquel Cruz; Emilio Rolán-Alvarez; Carlos Garcia

Step clinal transitions in inherited character(s) between genetically distinct populations are usually referred to as hybrid zones. An example is found in the population of the intertidal snail Littorina saxatilis in Galicia (NW Spain). We studied the shape of the overall fitness surface for sexual selection in this hybrid zone, and the position of hybrids and pure morphs on this surface. We found that sexual divergent selection acted on a combination of phenotypic traits separating the pure morphs, and therefore that sexual selection contributed to morph differentiation. The average fitness of hybrids as a group was not significantly different from that of the pure morphs, but they did show divergent sexual selection in some traits. These results are in agreement with a model of divergent selection favouring both the pure morph as well as those hybrids most resembling each morph. The finding of divergent selection is remarkable because quadratic selection gradients are usually weak in nature.


Evolution | 2004

RELATIVE CONTRIBUTION OF DISPERSAL AND NATURAL SELECTION TO THE MAINTENANCE OF A HYBRID ZONE IN LITTORINA

Raquel Cruz; Carlos Vilas; Javier Mosquera; Carlos Garcia

Abstract Habitat preference behavior may play an important role in nonallopatric speciation. However, most examples of habitat preference contributing to differentiation within natural populations correspond to parasites or herbivores living in the discrete environments constituted by their animal or plant hosts. In the present study we investigated migration guided by habitat preference in the intertidal snail Littorina saxatilis in a hybrid zone associated with an ecotone across the shore, which is therefore a continuously varying environment. First, we found evidence for this behavior in one of the two locations studied. Second, we made reciprocal transplants to suppress the phenotypic gradient observed across the hybrid zone and measured the relative contributions of selection and migration to its regeneration. Selection played an important role at the two locations studied, but migration was only important at one, where it accounted for between a third and a half of the regenerated gradient. This overall minor effect of migration was relevant for theoretical models dealing with nonallopatric speciation, because it suggested that variation for habitat preference did not have an important role in the initiation of the differentiation process. The preference behavior observed in the hybrid zone would have evolved secondarily, as a consequence of habitat‐dependent fitness differences between phenotypes.


Research in Developmental Disabilities | 2012

How executive functions are related to intelligence in Williams syndrome

Ana Alexandra Caldas Osório; Raquel Cruz; Adriana Sampaio; Elena Garayzábal; Rocío Martínez-Regueiro; Óscar F. Gonçalves; Angel Carracedo; Montse Fernández-Prieto

Williams syndrome is characterized by impairments in executive functions (EFs). However, it remains unknown how distinct types of EFs relate to intelligence in this syndrome. The present study analyzed performance on working memory, inhibiting and shifting, and its links to IQ in a sample of 17 individuals with WS, and compared them with a group of 17 typically developing individuals matched on chronological age and gender. In conclusion, our results suggest that working memory, inhibiting, and shifting relate differently to intelligence in WS as well as in typical development, with working memory being the EF most closely related to intelligence in both groups. Notably, the magnitude of the associations between the three EFs and IQ was substantially higher in the WS group than in the TD group, bringing further confirmation to the notion that frontal lobe impairments may produce a general compromise of several EFs.


Forensic Science International-genetics | 2014

Development of a forensic skin colour predictive test

O. Maroñas; C. Phillips; Jens Söchtig; Antonio Gómez-Tato; Raquel Cruz; José Antonio Álvarez-Dios; María de los Ángeles Casares de Cal; Y. Ruiz; M. Fondevila; Angel Carracedo; Maria Victoria Lareu

There is growing interest in skin colour prediction in the forensic field. However, a lack of consensus approaches for recording skin colour phenotype plus the complicating factors of epistatic effects, environmental influences such as exposure to the sun and unidentified genetic variants, present difficulties for the development of a forensic skin colour predictive test centred on the most strongly associated SNPs. Previous studies have analysed skin colour variation in single unadmixed population groups, including South Asians (Stokowski et al., 2007, Am. J. Hum. Genet, 81: 1119-32) and Europeans (Jacobs et al., 2013, Hum Genet. 132: 147-58). Nevertheless, a major challenge lies in the analysis of skin colour in admixed individuals, where co-ancestry proportions do not necessarily dictate any one persons skin colour. Our study sought to analyse genetic differences between African, European and admixed African-European subjects where direct spectrometric measurements and photographs of skin colour were made in parallel. We identified strong associations to skin colour variation in the subjects studied from a pigmentation SNP discovery panel of 59 markers and developed a forensic online classifier based on naïve Bayes analysis of the SNP profiles made. A skin colour predictive test is described using the ten most strongly associated SNPs in 8 genes linked to skin pigmentation variation.

Collaboration


Dive into the Raquel Cruz's collaboration.

Top Co-Authors

Avatar

Angel Carracedo

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

Francisco Barros

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

Carlos Garcia

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eugeni Domènech

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Javier P. Gisbert

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria Esteve

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

María Chaparro

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge