Raquel Giulian
Australian National University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Raquel Giulian.
Journal of Physics: Condensed Matter | 2013
Boshra Afra; Matias Rodriguez; C. Trautmann; Olli H. Pakarinen; Flyura Djurabekova; K. Nordlund; Thomas Bierschenk; Raquel Giulian; Mark C Ridgway; Giancarlo Rizza; Nigel Kirby; M. Toulemonde; Patrick Kluth
The morphology of swift heavy ion tracks in crystalline α-quartz was investigated using small angle x-ray scattering (SAXS), molecular dynamics (MD) simulations and transmission electron microscopy. Tracks were generated by irradiation with heavy ions with energies between 27 MeV and 2.2 GeV. The analysis of the SAXS data indicates a density change of the tracks of ~2 ± 1% compared to the surrounding quartz matrix for all irradiation conditions. The track radii only show a weak dependence on the electronic energy loss at values above 17 keV nm(-1), in contrast to values previously reported from Rutherford backscattering spectrometry measurements and expectations from the inelastic thermal spike model. The MD simulations are in good agreement at low energy losses, yet predict larger radii than SAXS at high ion energies. The observed discrepancies are discussed with respect to the formation of a defective halo around an amorphous track core, the existence of high stresses and/or the possible presence of a boiling phase in quartz predicted by the inelastic thermal spike model.
Applied Physics Letters | 2009
Patrick Kluth; Raquel Giulian; David Sprouster; Claudia Schnohr; Aidan Byrne; D. J. Cookson; Mark C Ridgway
P.K. and M.C.R. thank the Australian Research Council for support. P.K., R.G., D.J.S., and M.C.R. were supported by the Australian Synchrotron Research Program, funded by the Commonwealth of Australia via the Major National Research Facilities Program.
Journal of Applied Physics | 2010
David Sprouster; Raquel Giulian; Leandro Araujo; Patrick Kluth; Bernt Johannessen; David Cookson; Garry J Foran; Mark C Ridgway
This work was financially supported by the Australian Synchrotron and the Australian Research Council. ChemMatCARS Sector 15 is principally supported by the National Science Foundation/Department of Energy under Grant No. NSF/CHE-0822838. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
Journal of Applied Physics | 2011
David Sprouster; Raquel Giulian; Leandro Araujo; Patrick Kluth; Bernt Johannessen; David Cookson; Mark C Ridgway
This work was financially supported by the Australian Synchrotron and the Australian Research Council with access to equipment provided by the Australian Nanofabrication Facility. ChemMatCARS Sector 15 is principally supported by the NSF/ DOE under Grant No. NSF/CHE–0822838.
Journal of Physics D | 2009
W. Wesch; Claudia Schnohr; Patrick Kluth; Zohair Hussain; Leandro Araujo; Raquel Giulian; David Sprouster; Aidan Byrne; Mark C Ridgway
Swift heavy ion (SHI) irradiation of amorphous Si (a-Si) at non-perpendicular incidence leads to non-saturable plastic flow. The positive direction of flow suggests that a liquid phase of similar density to that of the amorphous solid must exist and accordingly a-Si behaves like a conventional glass under SHI irradiation. For room-temperature irradiation of a-Si, plastic flow is accompanied by swelling due to the formation of voids and a porous structure. For this paper, we have investigated the influence of SHI irradiation at room temperature on amorphous Ge (a-Ge), the latter produced by ion implantation of crystalline Ge substrates. Like a-Si, positive plastic flow is apparent, demonstrating that liquid polymorphism is common to these two semiconductors. Porosity is also observed, again confined to the amorphous phase and the result of electronic energy deposition. Enhanced plastic flow coupled with a volume expansion is clearly responsible for the structural modification of both a-Si and a-Ge irradiated at room temperature with swift heavy ions.
Applied Physics Letters | 2007
Raquel Giulian; Patrick Kluth; Leandro Araujo; David Llewellyn; Mark C Ridgway
The influence of ion irradiation of SiO2 on the size of metal nanocrystals (NCs) formed by ion implantation has been investigated. Thin SiO2 films were irradiated with high-energy Ge ions then implanted with Pt ions. Without Ge irradiation, the largest Pt NCs were observed beyond the Pt projected range. With irradiation, Ge-induced structural modification of the SiO2 layer yielded a decrease in Pt NC size with increasing Ge fluence at such depths. A defect-mediated NC nucleation mechanism is proposed and a simple yet effective means of modifying and controlling the Pt NC size is demonstrated.
Journal of Applied Physics | 2011
Patrick Kluth; Olli H. Pakarinen; Flyura Djurabekova; Raquel Giulian; Mark C Ridgway; Aidan Byrne; K. Nordlund
We report on the observation of nanoscale density fluctuations in 2 μm thick amorphous SiO2 layers irradiated with 185 MeV Au ions. At high fluences, in excess of approximately 5 × 1012 ions/cm2, where the surface is completely covered by ion tracks, synchrotron small angle x-ray scattering measurements reveal the existence of a steady state of density fluctuations. In agreement with molecular dynamics simulations, this steady state is consistent with an ion track “annihilation” process, where high-density regions generated in the periphery of new tracks fill in low-density regions located at the center of existing tracks.
Journal of Applied Physics | 2011
David Sprouster; Raquel Giulian; Leandro Araujo; Patrick Kluth; Bernt Johannessen; Nigel Kirby; Mark C Ridgway
This work was financially supported by the Australian Synchrotron and the Australian Research Council with access to equipment provided by the Australian Nanofabrication Facility.
Applied Physics Letters | 2014
Patrick Kluth; James Sullivan; Weixing Li; Ryan Weed; Claudia Schnohr; Raquel Giulian; Leandro Araujo; Wen Lei; Matias Rodriguez; Boshra Afra; Thomas Bierschenk; Rodney C. Ewing; Mark C Ridgway
Nano-porous structures form in GaSb after ion irradiation with 185 MeV Au ions. The porous layer formation is governed by the dominant electronic energy loss at this energy regime. The porous layer morphology differs significantly from that previously reported for low-energy, ion-irradiated GaSb. Prior to the onset of porosity, positron annihilation lifetime spectroscopy indicates the formation of small vacancy clusters in single ion impacts, while transmission electron microscopy reveals fragmentation of the GaSb into nanocrystallites embedded in an amorphous matrix. Following this fragmentation process, macroscopic porosity forms, presumably within the amorphous phase.
Radiation Effects and Defects in Solids | 2007
Patrick Kluth; Bernt Johannessen; Raquel Giulian; Claudia Schnohr; Garry J Foran; David Cookson; Aidan Byrne; Mark C Ridgway
We have investigated structural and morphological properties of metallic nanocrystals (NCs) exposed to ion irradiation. NCs were characterized by transmission electron microscopy in combination with advanced synchrotron-based analytical techniques, in particular X-ray absorption spectroscopy and small-angle X-ray scattering. A number of different effects were observed depending on the irradiation conditions. At energies where nuclear stopping is predominant, structural disorder/amorphization followed by inverse Ostwald ripening/dissolution due to ion beam mixing was observed for Au and Cu NCs embedded in SiO2. The ion-irradiation-induced crystalline to amorphous transition in the NCs, which cannot be achieved in the corresponding bulk metals, was attributed to their initially higher structural energy as compared to bulk material and possibly preferential nucleation of the amorphous phase at the NC/SiO2 interface. At very high irradiation energies (swift heavy ion irradiation), where the energy loss is nearly entirely due to electronic stopping, a size-dependent shape transformation of the NCs from spheres to rod like shapes was apparent in Au NCs. Our preliminary results are in good agreement with considerations on melting of the NCs in the ion track as one mechanism involved in the shape transformation.