Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Raquel Lobo-do-Vale is active.

Publication


Featured researches published by Raquel Lobo-do-Vale.


New Phytologist | 2010

Shifts in plant respiration and carbon use efficiency at a large‐scale drought experiment in the eastern Amazon

Daniel B. Metcalfe; Patrick Meir; Luiz E. O. C. Aragão; Raquel Lobo-do-Vale; David Galbraith; Rosie A. Fisher; Maria Manuela Chaves; João Maroco; A. C. L. da Costa; S. S. de Almeida; Alan Pantoja Braga; P. H. L. Gonçalves; J. de Athaydes; M.L. da Costa; T. T. B. Portela; A.A. de Oliveira; Yadvinder Malhi; Mathew Williams

*The effects of drought on the Amazon rainforest are potentially large but remain poorly understood. Here, carbon (C) cycling after 5 yr of a large-scale through-fall exclusion (TFE) experiment excluding about 50% of incident rainfall from an eastern Amazon rainforest was compared with a nearby control plot. *Principal C stocks and fluxes were intensively measured in 2005. Additional minor components were either quantified in later site measurements or derived from the available literature. *Total ecosystem respiration (R(eco)) and total plant C expenditure (PCE, the sum of net primary productivity (NPP) and autotrophic respiration (R(auto))), were elevated on the TFE plot relative to the control. The increase in PCE and R(eco) was mainly caused by a rise in R(auto) from foliage and roots. Heterotrophic respiration did not differ substantially between plots. NPP was 2.4 +/- 1.4 t C ha(-1) yr(-1) lower on the TFE than the control. Ecosystem carbon use efficiency, the proportion of PCE invested in NPP, was lower in the TFE plot (0.24 +/- 0.04) than in the control (0.32 +/- 0.04). *Drought caused by the TFE treatment appeared to drive fundamental shifts in ecosystem C cycling with potentially important consequences for long-term forest C storage.


Global Change Biology | 2015

After more than a decade of soil moisture deficit, tropical rainforest trees maintain photosynthetic capacity, despite increased leaf respiration.

Lucy Rowland; Raquel Lobo-do-Vale; Bradley Christoffersen; Eliane A. Melém; Bart Kruijt; Steel Silva Vasconcelos; Tomas F. Domingues; Oliver J. Binks; Alex A. R. Oliveira; Daniel B. Metcalfe; Antonio Carlos Lola da Costa; Maurizio Mencuccini; Patrick Meir

Abstract Determining climate change feedbacks from tropical rainforests requires an understanding of how carbon gain through photosynthesis and loss through respiration will be altered. One of the key changes that tropical rainforests may experience under future climate change scenarios is reduced soil moisture availability. In this study we examine if and how both leaf photosynthesis and leaf dark respiration acclimate following more than 12 years of experimental soil moisture deficit, via a through‐fall exclusion experiment (TFE) in an eastern Amazonian rainforest. We find that experimentally drought‐stressed trees and taxa maintain the same maximum leaf photosynthetic capacity as trees in corresponding control forest, independent of their susceptibility to drought‐induced mortality. We hypothesize that photosynthetic capacity is maintained across all treatments and taxa to take advantage of short‐lived periods of high moisture availability, when stomatal conductance (g s) and photosynthesis can increase rapidly, potentially compensating for reduced assimilate supply at other times. Average leaf dark respiration (R d) was elevated in the TFE‐treated forest trees relative to the control by 28.2 ± 2.8% (mean ± one standard error). This mean R d value was dominated by a 48.5 ± 3.6% increase in the R d of drought‐sensitive taxa, and likely reflects the need for additional metabolic support required for stress‐related repair, and hydraulic or osmotic maintenance processes. Following soil moisture deficit that is maintained for several years, our data suggest that changes in respiration drive greater shifts in the canopy carbon balance, than changes in photosynthetic capacity.


Frontiers in Plant Science | 2016

Osmolality and Non-Structural Carbohydrate Composition in the Secondary Phloem of Trees across a Latitudinal Gradient in Europe.

Anna Lintunen; Teemu Paljakka; Tuula Jyske; Mikko Peltoniemi; Frank J. Sterck; Georg von Arx; Hervé Cochard; P. Copini; Maria C. Caldeira; Sylvain Delzon; Roman Gebauer; Leila Grönlund; Natasa Kiorapostolou; Silvia Lechthaler; Raquel Lobo-do-Vale; Richard L. Peters; Giai Petit; Angela Luisa Prendin; Yann Salmon; Kathy Steppe; Josef Urban; Sílvia Roig Juan; Elisabeth M. R. Robert; Teemu Hölttä

Phloem osmolality and its components are involved in basic cell metabolism, cell growth, and in various physiological processes including the ability of living cells to withstand drought and frost. Osmolality and sugar composition responses to environmental stresses have been extensively studied for leaves, but less for the secondary phloem of plant stems and branches. Leaf osmotic concentration and the share of pinitol and raffinose among soluble sugars increase with increasing drought or cold stress, and osmotic concentration is adjusted with osmoregulation. We hypothesize that similar responses occur in the secondary phloem of branches. We collected living bark samples from branches of adult Pinus sylvestris, Picea abies, Betula pendula and Populus tremula trees across Europe, from boreal Northern Finland to Mediterranean Portugal. In all studied species, the observed variation in phloem osmolality was mainly driven by variation in phloem water content, while tissue solute content was rather constant across regions. Osmoregulation, in which osmolality is controlled by variable tissue solute content, was stronger for Betula and Populus in comparison to the evergreen conifers. Osmolality was lowest in mid-latitude region, and from there increased by 37% toward northern Europe and 38% toward southern Europe due to low phloem water content in these regions. The ratio of raffinose to all soluble sugars was negligible at mid-latitudes and increased toward north and south, reflecting its role in cold and drought tolerance. For pinitol, another sugar known for contributing to stress tolerance, no such latitudinal pattern was observed. The proportion of sucrose was remarkably low and that of hexoses (i.e., glucose and fructose) high at mid-latitudes. The ratio of starch to all non-structural carbohydrates increased toward the northern latitudes in agreement with the build-up of osmotically inactive C reservoir that can be converted into soluble sugars during winter acclimation in these cold regions. Present results for the secondary phloem of trees suggest that adjustment with tissue water content plays an important role in osmolality dynamics. Furthermore, trees acclimated to dry and cold climate showed high phloem osmolality and raffinose proportion.


Frontiers in Microbiology | 2015

Environmental and microbial factors influencing methane and nitrous oxide fluxes in Mediterranean cork oak woodlands: trees make a difference

Alla Shvaleva; Henri M.P. Siljanen; Alexandra Correia; Filipe Costa e Silva; Richard E. Lamprecht; Raquel Lobo-do-Vale; Catarina Bicho; David Fangueiro; Margaret Anderson; J. S. Pereira; Maria Manuela Chaves; Cristina Cruz; Pertti J. Martikainen

Cork oak woodlands (montado) are agroforestry systems distributed all over the Mediterranean basin with a very important social, economic and ecological value. A generalized cork oak decline has been occurring in the last decades jeopardizing its future sustainability. It is unknown how loss of tree cover affects microbial processes that are consuming greenhouse gases in the montado ecosystem. The study was conducted under two different conditions in the natural understory of a cork oak woodland in center Portugal: under tree canopy (UC) and open areas without trees (OA). Fluxes of methane and nitrous oxide were measured with a static chamber technique. In order to quantify methanotrophs and bacteria capable of nitrous oxide consumption, we used quantitative real-time PCR targeting the pmoA and nosZ genes encoding the subunit of particulate methane mono-oxygenase and catalytic subunit of the nitrous oxide reductase, respectively. A significant seasonal effect was found on CH4 and N2O fluxes and pmoA and nosZ gene abundance. Tree cover had no effect on methane fluxes; conversely, whereas the UC plots were net emitters of nitrous oxide, the loss of tree cover resulted in a shift in the emission pattern such that the OA plots were a net sink for nitrous oxide. In a seasonal time scale, the UC had higher gene abundance of Type I methanotrophs. Methane flux correlated negatively with abundance of Type I methanotrophs in the UC plots. Nitrous oxide flux correlated negatively with nosZ gene abundance at the OA plots in contrast to that at the UC plots. In the UC soil, soil organic matter had a positive effect on soil extracellular enzyme activities, which correlated positively with the N2O flux. Our results demonstrated that tree cover affects soil properties, key enzyme activities and abundance of microorganisms and, consequently net CH4 and N2O exchange.


Scientific Reports | 2018

Volatile diterpene emission by two Mediterranean Cistaceae shrubs

A. M. Yáñez-Serrano; Lukas Fasbender; Jürgen Kreuzwieser; D. Dubbert; S. Haberstroh; Raquel Lobo-do-Vale; Maria C. Caldeira; Christiane Werner

Mediterranean vegetation emits a wide range of biogenic volatile organic compounds (BVOCs) among which isoprenoids present quantitatively the most important compound class. Here, we investigated the isoprenoid emission from two Mediterranean Cistaceae shrubs, Halimium halimifolium and Cistus ladanifer, under controlled and natural conditions, respectively. For the first time, diurnal emission patterns of the diterpene kaurene were detected in real-time by Proton-Transfer-Reaction-Time-of-Flight-Mass-Spectrometer. Kaurene emissions were strongly variable among H. halimifolium plants, ranging from 0.01 ± 0.003 to 0.06 ± 0.01 nmol m−2 s−1 in low and high emitting individuals, respectively. They were in the same order of magnitude as monoterpene (0.01 ± 0.01 to 0.11 ± 0.04 nmol m−2 s−1) and sesquiterpene (0.01 ± 0.01 to 0.52 nmol m−2 s−1) emission rates. Comparable range and variability was found for C. ladanifer under natural conditions. Labelling with 13C-pyruvate suggested that emitted kaurene was not derived from de novo biosynthesis. The high kaurene content in leaves, the weak relationship with ecophysiological parameters and the tendency of higher emissions with increasing temperatures in the field indicate an emission from storage pools. This study highlights significant emissions of kaurene from two Mediterranean shrub species, indicating that the release of diterpenes into the atmosphere should probably deserve more attention in the future.


PLOS ONE | 2018

Quantifying in situ phenotypic variability in the hydraulic properties of four tree species across their distribution range in Europe

N. González-Muñoz; Frank J. Sterck; José M. Torres-Ruiz; Giai Petit; Hervé Cochard; G. von Arx; Anna Lintunen; Maria C. Caldeira; G. Capdeville; P. Copini; Roman Gebauer; Leila Grönlund; Teemu Hölttä; Raquel Lobo-do-Vale; Mikko Peltoniemi; A. Stritih; Josef Urban; Sylvain Delzon

Many studies have reported that hydraulic properties vary considerably between tree species, but little is known about their intraspecific variation and, therefore, their capacity to adapt to a warmer and drier climate. Here, we quantify phenotypic divergence and clinal variation for embolism resistance, hydraulic conductivity and branch growth, in four tree species, two angiosperms (Betula pendula, Populus tremula) and two conifers (Picea abies, Pinus sylvestris), across their latitudinal distribution in Europe. Growth and hydraulic efficiency varied widely within species and between populations. The variability of embolism resistance was in general weaker than that of growth and hydraulic efficiency, and very low for all species but Populus tremula. In addition, no and weak support for a safety vs. efficiency trade-off was observed for the angiosperm and conifer species, respectively. The limited variability of embolism resistance observed here for all species except Populus tremula, suggests that forest populations will unlikely be able to adapt hydraulically to drier conditions through the evolution of embolism resistance.


Frontiers in Plant Science | 2018

Terpenoid Emissions of Two Mediterranean Woody Species in Response to Drought Stress

Simon Haberstroh; Jürgen Kreuzwieser; Raquel Lobo-do-Vale; Maria C. Caldeira; Maren Dubbert; Christiane Werner

Drought is a major environmental constrain affecting plant performance and survival, particularly in Mediterranean ecosystems. Terpenoids may play a protective role under these conditions, however, observations of drought effects on plant terpenoid emissions are controversial ranging from decreased emissions to unaffected or increased release of terpenoids. In the present study we investigated terpenoid emissions of cork oak (Quercus suber) and gum rockrose (Cistus ladanifer) in response to summer drought stress in 2017. Pre-dawn leaf water potential (ΨPD) decreased from -0.64 to -1.72 MPa in Q. suber and from -1.69 to -4.05 MPa in C. ladanifer, indicating a transition from mild to severe drought along summer. Total terpenoid emissions decreased with drought, but differed significantly between species (p < 0.001) and in response to ΨPD, air temperature and assimilation rates. C. ladanifer emitted a large variety of >75 compounds comprising monoterpenes, sesquiterpenes and even diterpenes, which strongly decreased from 1.37 ± 0.23 μg g-1h-1 to 0.40 ± 0.08 μg g-1h-1 (p < 0.001) in response to drought. Total emission rates were positively correlated to air temperature (p < 0.001). C. ladanifer behavior points toward terpenoid leaf storage depletion and reduced substrate availability for terpenoid synthesis with increasing drought, most likely accelerated by high air temperatures. Q. suber emitted mainly monoterpenes and emissions declined significantly from June (0.50 ± 0.08 μg g-1h-1) to August (0.29 ± 0.02 μg g-1h-1) (p < 0.01). Emission rates were weakly correlated with net assimilation rates (R2 = 0.19, p < 0.001), but did not respond strongly to ΨPD and air temperature. Early onset of drought in 2017 most likely reduced plant metabolism in Q. suber, resulting in diminished, but stable terpenoid fluxes. Calculation of standard emission factors (at 30°C) revealed contrasting emission patterns of decreasing, unaffected, or increasing fluxes of single terpenoid compounds. Unaffected or drought-enhanced emissions of compounds such as α-pinene, camphene or manoyl oxide may point toward a specific role of these terpenoids in abiotic stress adaptation. In conclusion, these results suggest a strong negative, but species- and compound-specific effect of severe drought on terpenoid fluxes in Mediterranean ecosystems.


Biogeosciences Discussions | 2018

Drought reduces tree growing season length but increases nitrogen resorption efficiency in a Mediterranean ecosystem

Raquel Lobo-do-Vale; Cathy Kurz Besson; Maria C. Caldeira; Maria Manuela Chaves; J. S. Pereira

Mediterranean ecosystems are hotspots for climate change, as the highest impacts are forecasted for the Mediterranean region, mainly by more frequent and intense severe droughts. Plant phenology is a good indicator of species’ responses to climate change. In this study, we compared the spring phenology of cork oak trees (Quercus suber), an evergreen species, over 2 contrasting years, a mild year (2004) and a dry year (2005), which was the most severe drought since records exist. We evaluated the timing of occurrence, duration, and intensity of bud development, budburst, shoot elongation, trunk growth, and leaf senescence (phenophases) and assessed the nitrogen resorption efficiency from senescent to green leaves. The temperature was the main driver of budburst. Nevertheless, water had the main role of constraining all the other phenophases by strongly reducing the growing season length (−48 %) and consequently the tree growth. Basal area increment was the most affected growth variable (−36 %), although it occurred at a similar rate in the 2 years. Shoot elongation was also reduced (−21 %), yet elongation occurred at a higher rate in the dry year compared to the mild year. Leaf senescence during the bulk period was higher in the dry year, in which leaves were shed at the same rate over a longer period. Nitrogen concentrations in green and senescent leaves were affected by drought and nitrogen resorption efficiency increased remarkably (+22 %). Our results highlight the importance of studying different phenological metrics to improve our understanding of the ecosystem’s responses to climate change. The faster dynamics observed in shoot elongation, while all other phenophases developed at the same rate, indicate that leaf area development is privileged in cork oak. Water availability was the main driver of spring growth in this Mediterranean ecosystem; however, growth may be affected by complex interplays between precipitation and temperature, such as higher temperatures during dry winters or heatwaves during spring, that are likely to result in water stress. Longer studies are needed to disentangle those interplays. Finally, a higher nitrogen resorption efficiency in response to drought appears to be an adaptive trait that mitigates the limitation in nitrogen uptake by the roots during drought and contributes to improving tree fitness in the short term but will probably exert a negative feedback on the nitrogen cycle in the long term, which might affect the ecosystem functioning under the forecasted droughts.


Agricultural and Forest Meteorology | 2013

Comparison of static chambers to measure CH4 emissions from soils

Mari Pihlatie; Jesper Riis Christiansen; Hermanni Aaltonen; Janne F. J. Korhonen; Annika Nordbo; Terhi Rasilo; Giuseppe Benanti; Michael Giebels; Mohamed Helmy; Jatta Sheehy; S.K. Jones; Radosław Juszczak; Roland Klefoth; Raquel Lobo-do-Vale; Ana Paula Rosa; Peter Schreiber; Dominique Serça; Sara Vicca; Benjamin Wolf; Jukka Pumpanen


Global Change Biology | 2017

A synthesis of radial growth patterns preceding tree mortality

Maxime Cailleret; Steven Jansen; Elisabeth M. R. Robert; Lucía DeSoto; Tuomas Aakala; Joseph A. Antos; Barbara Beikircher; Christof Bigler; Harald Bugmann; Marco Caccianiga; Vojtěch Čada; J. Julio Camarero; Paolo Cherubini; Hervé Cochard; Marie R. Coyea; Katarina Čufar; Adrian J. Das; Hendrik Davi; Sylvain Delzon; Michael Dorman; Guillermo Gea-Izquierdo; Sten Gillner; Laurel J. Haavik; Henrik Hartmann; Ana-Maria Hereş; Kevin R. Hultine; Pavel Janda; Jeffrey M. Kane; V.I. Kharuk; Thomas Kitzberger

Collaboration


Dive into the Raquel Lobo-do-Vale's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. S. Pereira

Instituto Superior de Agronomia

View shared research outputs
Top Co-Authors

Avatar

Maria C. Caldeira

Instituto Superior de Agronomia

View shared research outputs
Top Co-Authors

Avatar

Hervé Cochard

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frank J. Sterck

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

P. Copini

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge