Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Raquel Mendonça is active.

Publication


Featured researches published by Raquel Mendonça.


Frontiers in Microbiology | 2013

Spatial variation of sediment mineralization supports differential CO2 emissions from a tropical hydroelectric reservoir

Simone J. Cardoso; Luciana O. Vidal; Raquel Mendonça; Lars J. Tranvik; Sebastian Sobek; Roland Fábio

Substantial amounts of organic matter (OM) from terrestrial ecosystems are buried as sediments in inland waters. It is still unclear to what extent this OM constitutes a sink of carbon, and how much of it is returned to the atmosphere upon mineralization to carbon dioxide (CO2). The construction of reservoirs affects the carbon cycle by increasing OM sedimentation at the regional scale. In this study we determine the OM mineralization in the sediment of three zones (river, transition, and dam) of a tropical hydroelectric reservoir in Brazil as well as identify the composition of the carbon pool available for mineralization. We measured sediment organic carbon mineralization rates and related them to the composition of the OM, bacterial abundance and pCO2 of the surface water of the reservoir. Terrestrial OM was an important substrate for the mineralization. In the river and transition zones most of the OM was allochthonous (56 and 48%, respectively) while the dam zone had the lowest allochthonous contribution (7%). The highest mineralization rates were found in the transition zone (154.80 ± 33.50 mg C m-2 d-1) and the lowest in the dam (51.60 ± 26.80 mg C m-2 d-1). Moreover, mineralization rates were significantly related to bacterial abundance (r2 = 0.50, p < 0.001) and pCO2 in the surface water of the reservoir (r2 = 0.73, p < 0.001). The results indicate that allochthonous OM has different contributions to sediment mineralization in the three zones of the reservoir. Further, the sediment mineralization, mediated by heterotrophic bacteria metabolism, significantly contributes to CO2 supersaturation in the water column, resulting in higher pCO2 in the river and transition zones in comparison with the dam zone, affecting greenhouse gas emission estimations from hydroelectric reservoirs.


Hydrobiologia | 2013

Bimodality in stable isotope composition facilitates the tracing of carbon transfer from macrophytes to higher trophic levels

Raquel Mendonça; Sarian Kosten; Gissell Lacerot; Néstor Mazzeo; Fábio Roland; Jean Pierre Henry Balbaud Ometto; Eduardo Alonso Paz; Claudia Petean Bove; Norma Catarina Bueno; José Henrique C. Gomes; Marten Scheffer

Even though the suitability of macrophytes to act as a carbon source to food webs has been questioned by some studies, some others indicate that macrophyte-derived carbon may play an important role in the trophic transfer of organic matter in the food web of shallow lakes. To evaluate the importance of macrophytes to food webs, we collected primary producers—macrophytes and periphyton—and consumers from 19 South American shallow lakes and analyzed their carbon stable isotopes composition (δ13C). Despite the diversity of inorganic carbon sources available in our study lakes, the macrophytes’ δ13C signatures showed a clear bimodal distribution: 13C-depleted and 13C-enriched, averaging at −27.2 and −13.5‰, respectively. We argue that the use of either CO2 or HCO3− by the macrophytes largely caused the bimodal pattern in δ13C signals. The contribution of carbon from macrophytes to the lake’s food webs was not straightforward in most of the lakes because the macrophytes’ isotopic composition was quite similar to the isotopic composition of periphyton, phytoplankton, and terrestrial carbon. However, in some lakes where the macrophytes had a distinct isotopic signature, our data suggest that macrophytes can represent an important carbon source to shallow lake food webs.


Frontiers in Microbiology | 2016

High Primary Production Contrasts with Intense Carbon Emission in a Eutrophic Tropical Reservoir

Rafael M. Almeida; Gabriel N. Nóbrega; Pedro C. Junger; Aline V. Figueiredo; Anízio S. Andrade; Caroline G. B. de Moura; Denise Tonetta; Ernandes S. Oliveira; Fabiana Araújo; Felipe Rust; Juan M. Piñeiro-Guerra; Jurandir Rodrigues de Mendonça; Leonardo R. Medeiros; Lorena Pinheiro; Marcela Miranda; Mariana R. A. Costa; Michaela L. Melo; Regina L. G. Nobre; Thiago Benevides; Fábio Roland; Jeroen J. M. de Klein; Nathan Barros; Raquel Mendonça; Vanessa Becker; Vera L. M. Huszar; Sarian Kosten

Recent studies from temperate lakes indicate that eutrophic systems tend to emit less carbon dioxide (CO2) and bury more organic carbon (OC) than oligotrophic ones, rendering them CO2 sinks in some cases. However, the scarcity of data from tropical systems is critical for a complete understanding of the interplay between eutrophication and aquatic carbon (C) fluxes in warm waters. We test the hypothesis that a warm eutrophic system is a source of both CO2 and CH4 to the atmosphere, and that atmospheric emissions are larger than the burial of OC in sediments. This hypothesis was based on the following assumptions: (i) OC mineralization rates are high in warm water systems, so that water column CO2 production overrides the high C uptake by primary producers, and (ii) increasing trophic status creates favorable conditions for CH4 production. We measured water-air and sediment-water CO2 fluxes, CH4 diffusion, ebullition and oxidation, net ecosystem production (NEP) and sediment OC burial during the dry season in a eutrophic reservoir in the semiarid northeastern Brazil. The reservoir was stratified during daytime and mixed during nighttime. In spite of the high rates of primary production (4858 ± 934 mg C m-2 d-1), net heterotrophy was prevalent due to high ecosystem respiration (5209 ± 992 mg C m-2 d-1). Consequently, the reservoir was a source of atmospheric CO2 (518 ± 182 mg C m-2 d-1). In addition, the reservoir was a source of ebullitive (17 ± 10 mg C m-2 d-1) and diffusive CH4 (11 ± 6 mg C m-2 d-1). OC sedimentation was high (1162 mg C m-2 d-1), but our results suggest that the majority of it is mineralized to CO2 (722 ± 182 mg C m-2 d-1) rather than buried as OC (440 mg C m-2 d-1). Although temporally resolved data would render our findings more conclusive, our results suggest that despite being a primary production and OC burial hotspot, the tropical eutrophic system studied here was a stronger CO2 and CH4 source than a C sink, mainly because of high rates of OC mineralization in the water column and sediments.


Nature Communications | 2017

Organic carbon burial in global lakes and reservoirs

Raquel Mendonça; Roger A. Müller; David W. Clow; Charles Verpoorter; Peter A. Raymond; Lars J. Tranvik; Sebastian Sobek

Burial in sediments removes organic carbon (OC) from the short-term biosphere-atmosphere carbon (C) cycle, and therefore prevents greenhouse gas production in natural systems. Although OC burial in lakes and reservoirs is faster than in the ocean, the magnitude of inland water OC burial is not well constrained. Here we generate the first global-scale and regionally resolved estimate of modern OC burial in lakes and reservoirs, deriving from a comprehensive compilation of literature data. We coupled statistical models to inland water area inventories to estimate a yearly OC burial of 0.15 (range, 0.06–0.25) Pg C, of which ~40% is stored in reservoirs. Relatively higher OC burial rates are predicted for warm and dry regions. While we report lower burial than previously estimated, lake and reservoir OC burial corresponded to ~20% of their C emissions, making them an important C sink that is likely to increase with eutrophication and river damming.The magnitude of organic carbon burial in lakes and reservoirs is poorly constrained. Here, using a compilation of modern data from the literature and statistical modeling, the authors estimate a global yearly organic carbon burial of 0.15 Pg C in inland waters, of which 40% is stored in reservoirs.


Archive | 2012

Greenhouse Gas Emissions from Hydroelectric Reservoirs: What Knowledge Do We Have and What is Lacking?

Raquel Mendonça; Nathan Barros; Luciana O. Vidal; Felipe S. Pacheco; Sarian Kosten; Fábio Roland

Greenhouse Gas Emissions from Hydroelectric Reservoirs: What Knowledge Do We Have and What is Lacking?


Limnology and Oceanography | 2018

Large but variable methane production in anoxic freshwater sediment upon addition of allochthonous and autochthonous organic matter

Charlotte Grasset; Raquel Mendonça; Gabriella Villamor Saucedo; David Bastviken; Fábio Roland; Sebastian Sobek

Abstract An important question in the context of climate change is to understand how CH4 production is regulated in anoxic sediments of lakes and reservoirs. The type of organic carbon (OC) present in lakes is a key factor controlling CH4 production at anoxic conditions, but the studies investigating the methanogenic potential of the main OC types are fragmented. We incubated different types of allochthonous OC (alloOC; terrestrial plant leaves) and autochthonous OC (autoOC; phytoplankton and two aquatic plants species) in an anoxic sediment during 130 d. We tested if (1) the supply of fresh alloOC and autoOC to an anoxic refractory sediment would fuel CH4 production and if (2) autoOC would decompose faster than alloOC. The addition of fresh OC greatly increased CH4 production and the δ13C‐CH4 partitioning indicated that CH4 originated exclusively from the fresh OC. The large CH4 production in an anoxic sediment fueled by alloOC is a new finding which indicates that all systems with anoxic conditions and high sedimentation rates have the potential to be CH4 emitters. The autoOC decomposed faster than alloOC, but the total CH4 production was not higher for all autoOC types, one aquatic plant species having values as low as the terrestrial leaves, and the other one having values as high as phytoplankton. Our study is the first to report such variability, suggesting that the extent to which C fixed by aquatic plants is emitted as greenhouse gases or buried as OC in sediment could more generally differ between aquatic vegetation types.


Inland Waters | 2015

Phosphorus transport by the largest Amazon tributary (Madeira River, Brazil) and its sensitivity to precipitation and damming

Rafael M. Almeida; Lars J. Tranvik; Vera L. M. Huszar; Sebastian Sobek; Raquel Mendonça; Nathan Barros; Gina Boemer; João Durval Arantes; Fábio Roland

Abstract Originating in the Bolivian and Peruvian Andes, the Madeira River is the largest tributary of the Amazon River in terms of discharge. Andean rivers transport large quantities of nutrient-rich suspended sediments and are the main source of phosphorus (P) to the Amazon basin. Here, we show the seasonal variability in concentrations and loads of different P forms (total, particulate, dissolved, and soluble reactive P) in the Madeira River through 8 field campaigns between 2009 and 2011. At our sampling reach in Porto Velho, Brazil, the Madeira River transports ~177–247 Gg yr−1 of P, mostly linked to particles (~85%). Concentrations and loads of all P forms have a maximum at rising waters and a minimum at low waters. Total P concentrations were substantially higher at a given discharge at rising water than at a similar discharge at falling water. The peak of P concentrations matched the peak of rainfall in the upper basin, suggesting an influence of precipitation-driven erosion. Projected precipitation increase in the eastern slopes of the Andes could enhance sediment yield and hence the P transport in the Madeira River. Because most of the P is particulate, however, we hypothesize that the planned proliferation of hydropower dams in the Madeira basin has the potential to reduce P loads substantially, possibly counteracting any precipitation-related increases. In the long term, this could be detrimental to highly productive downstream floodplain forests that are seasonally fertilized with P-rich deposits.


Environmental Science & Technology | 2018

Spatially Resolved Measurements of CO2 and CH4 Concentration and Gas-Exchange Velocity Highly Influence Carbon-Emission Estimates of Reservoirs

José R. Paranaíba; Nathan Barros; Raquel Mendonça; Annika Linkhorst; Anastasija Isidorova; Fábio Roland; Rafael M. Almeida; Sebastian Sobek

The magnitude of diffusive carbon dioxide (CO2) and methane (CH4) emission from man-made reservoirs is uncertain because the spatial variability generally is not well-represented. Here, we examine the spatial variability and its drivers for partial pressure, gas-exchange velocity (k), and diffusive flux of CO2 and CH4 in three tropical reservoirs using spatially resolved measurements of both gas concentrations and k. We observed high spatial variability in CO2 and CH4 concentrations and flux within all three reservoirs, with river inflow areas generally displaying elevated CH4 concentrations. Conversely, areas close to the dam are generally characterized by low concentrations and are therefore not likely to be representative for the whole system. A large share (44–83%) of the within-reservoir variability of gas concentration was explained by dissolved oxygen, pH, chlorophyll, water depth, and within-reservoir location. High spatial variability in k was observed, and kCH4 was persistently higher (on average, 2.5 times more) than kCO2. Not accounting for the within-reservoir variability in concentrations and k may lead to up to 80% underestimation of whole-system diffusive emission of CO2 and CH4. Our findings provide valuable information on how to develop field-sampling strategies to reliably capture the spatial heterogeneity of diffusive carbon fluxes from reservoirs.


Chemosphere | 2019

Far-reaching cytogenotoxic effects of mine waste from the Fundão dam disaster in Brazil

Gabrielle R. Quadra; Fábio Roland; Nathan Barros; Olaf Malm; A. S. Lino; Guilherme M. Azevedo; José Ricardo Thomaz; Larissa Fonseca Andrade-Vieira; Milene Miranda Praça-Fontes; Rafael M. Almeida; Raquel Mendonça; Simone J. Cardoso; Yago S. Guida; José Marcello Salabert de Campos

On November 2015, one of Brazils most important watersheds was impacted by the mine waste from Fundão dam collapse in Mariana. The mine waste traveled over 600 km along the Doce River before reaching the sea, causing severe devastation along its way. Here we assessed trace element concentrations and cytogenotoxic effects of the released mine waste. Water samples were collected along the Doce River ten days after the disaster in two impacted sites and one non-impacted site. Sampling points were located hundreds of kilometers downstream of the collapsed dam. Water samples were used for trace element quantification and to run an experiment using Allium cepa to test cytogenotoxicity. We found extremely high concentrations of particulate Fe, Al, and Mn in the impacted sites. We observed cytogenotoxic effects such as alterations in mitotic and phase indexes, and enhanced frequency of chromosomal aberrations. Our results indicate interferences in the cell cycle in impacted sites located hundreds of kilometers downstream of the disaster. The environmental impacts of the dam collapse may not only be far-reaching but also very likely long-lasting, because the mine waste may persist in the Doce River sediment for decades.


Inland Waters | 2018

Extreme drought boosts CO2 and CH4 emissions from reservoir drawdown areas

Sarian Kosten; Sanne W. van den Berg; Raquel Mendonça; José R. Paranaíba; Fábio Roland; Sebastian Sobek; Jamon Van Den Hoek; Nathan Barros

ABSTRACT Although previous studies suggest that greenhouse gas (GHG) emissions from reservoir sediment exposed to the atmosphere during drought may be substantial, this process has not been rigorously quantified. Here we determined carbon dioxide (CO2) and methane (CH4) emissions from sediment cores exposed to a drying and rewetting cycle. We found a strong temporal variation in GHG emissions with peaks when the sediment was drained (C emissions from permanently wet sediment and drained sediments were, respectively, 251 and 1646 mg m−2 d−1 for CO2 and 0.8 and 547.4 mg m−2 d−1 for CH4) and then again during rewetting (C emissions from permanently wet sediment and rewetted sediments were, respectively, 456 and 1725mg m−2 d−1 for CO2 and 1.3 and 3.1 mg m−2 d−1 for CH4). To gain insight into the importance of these emissions at a regional scale, we used Landsat satellite imagery to upscale our results to all Brazilian reservoirs. We found that during the extreme drought of 2014–2015, an additional 1299 km2 of sediment was exposed, resulting in an estimated emission of 8.5 × 1011 g of CO2-eq during the first 15 d after the overlying water disappeared and in the first 33 d after rewetting, the same order of magnitude as the year-round GHG emissions of large (∼mean surface water area 454 km2) Brazilian reservoirs, excluding the emissions from the draw-down zone. Our estimate, however, has high uncertainty, with actual emissions likely higher. We therefore argue that the effects of drought on reservoir GHG emissions merits further study, especially because climate models indicate an increase in the frequency of severe droughts in the future. We recommend incorporation of emissions during drying and rewetting into GHG budgets of reservoirs to improve regional GHG emission estimates and to enable comparison between GHG emissions from hydroelectric and other electricity sources. We also emphasize that peak emissions at the onset of drought and the later rewetting should be quantified to obtain reliable emission estimates.

Collaboration


Dive into the Raquel Mendonça's collaboration.

Top Co-Authors

Avatar

Fábio Roland

Universidade Federal de Juiz de Fora

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sarian Kosten

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Nathan Barros

Universidade Federal de Juiz de Fora

View shared research outputs
Top Co-Authors

Avatar

Simone J. Cardoso

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luciana O. Vidal

Universidade Federal de Juiz de Fora

View shared research outputs
Top Co-Authors

Avatar

Marcos Paulo Figueiredo-Barros

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Vera L. M. Huszar

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge