Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Raquel Petrilli is active.

Publication


Featured researches published by Raquel Petrilli.


Colloids and Surfaces B: Biointerfaces | 2014

Liposomes as carriers of hydrophilic small molecule drugs: Strategies to enhance encapsulation and delivery

Josimar O. Eloy; Marina Claro de Souza; Raquel Petrilli; Juliana Palma Abriata Barcellos; Robert J. Lee; Juliana Maldonado Marchetti

Although hydrophilic small molecule drugs are widely used in the clinic, their rapid clearance, suboptimal biodistribution, low intracellular absorption and toxicity can limit their therapeutic efficacy. These drawbacks can potentially be overcome by loading the drug into delivery systems, particularly liposomes; however, low encapsulation efficiency usually results. Many strategies are available to improve both the drug encapsulation efficiency and delivery to the target site to reduce side effects. For encapsulation, passive and active strategies are available. Passive strategies encompass the proper selection of the composition of the formulation, zeta potential, particle size and preparation method. Moreover, many weak acids and bases, such as doxorubicin, can be actively loaded with high efficiency. It is highly desirable that once the drug is encapsulated, it should be released preferentially at the target site, resulting in an optimal therapeutic effect devoid of side effects. For this purpose, targeted and triggered delivery approaches are available. The rapidly increasing knowledge of the many overexpressed biochemical makers in pathological sites, reviewed herein, has enabled the development of liposomes decorated with ligands for cell-surface receptors and active delivery. Furthermore, many liposomal formulations have been designed to actively release their content in response to specific stimuli, such as a pH decrease, heat, external alternating magnetic field, ultrasound or light. More than half a century after the discovery of liposomes, some hydrophilic small molecule drugs loaded in liposomes with high encapsulation efficiency are available on the market. However, targeted liposomes or formulations able to deliver the drug after a stimulus are not yet a reality in the clinic and are still awaited.


Pharmaceutical Research | 2013

Delivery Systems and Local Administration Routes for Therapeutic siRNA

Fabiana T. M. C. Vicentini; Lívia Neves Borgheti-Cardoso; Lívia Vieira Depieri; Danielle de Macedo Mano; Thais Fedatto Abelha; Raquel Petrilli; Maria Vitória Lopes Badra Bentley

ABSTRACTWith the increasing number of studies proposing new and optimal delivery strategies for the efficacious silencing of gene-related diseases by the local administration of siRNAs, the present review aims to provide a broad overview of the most important and latest developments of non-viral siRNA delivery systems for local administration. Moreover, the main disease targets for the local delivery of siRNA to specific tissues or organs, including the skin, the lung, the eye, the nervous system, the digestive system and the vagina, were explored.


Colloids and Surfaces B: Biointerfaces | 2016

Co-loaded paclitaxel/rapamycin liposomes: Development, characterization and in vitro and in vivo evaluation for breast cancer therapy

Josimar O. Eloy; Raquel Petrilli; José Fernando Topan; Heriton Marcelo Ribeiro Antonio; Juliana Palma Abriata Barcellos; Deise L. Chesca; Luciano Neder Serafini; Daniel Guimarães Tiezzi; Robert J. Lee; Juliana Maldonado Marchetti

Paclitaxel and rapamycin have been reported to act synergistically to treat breast cancer. Albeit paclitaxel is available for breast cancer treatment, the most commonly used formulation in the clinic presents side effects, limiting its use. Furthermore, both drugs present pharmacokinetics drawbacks limiting their in vivo efficacy and clinic combination. As an alternative, drug delivery systems, particularly liposomes, emerge as an option for drug combination, able to simultaneously deliver co-loaded drugs with improved therapeutic index. Therefore, the purpose of this study is to develop and characterize a co-loaded paclitaxel and rapamycin liposome and evaluate it for breast cancer efficacy both in vitro and in vivo. Results showed that a SPC/Chol/DSPE-PEG (2000) liposome was able to co-encapsulate paclitaxel and rapamycin with suitable encapsulation efficiency values, nanometric particle size, low polydispersity and neutral zeta potential. Taken together, FTIR and thermal analysis evidenced drug conversion to the more bioavailable molecular and amorphous forms, respectively, for paclitaxel and rapamycin. The pegylated liposome exhibited excellent colloidal stability and was able to retain drugs encapsulated, which were released in a slow and sustained fashion. Liposomes were more cytotoxic to 4T1 breast cancer cell line than the free drugs and drugs acted synergistically, particularly when co-loaded. Finally, in vivo therapeutic evaluation carried out in 4T1-tumor-bearing mice confirmed the in vitro results. The co-loaded paclitaxel/rapamycin pegylated liposome better controlled tumor growth compared to the solution. Therefore, we expect that the formulation developed herein might be a contribution for future studies focusing on the clinical combination of paclitaxel and rapamycin.


Current Nanoscience | 2012

Liquid Crystal Nanodispersions Enable the Cutaneous Delivery of Photosensitizer for Topical PDT: Fluorescence Microscopy Study of Skin Penetration

Fabíola Silva Garcia Praça; Wanessa Silva Garcia Medina; Raquel Petrilli; Maria Vitória Lopes Badra Bentley

Topical photodynamic therapy (PDT) has been applied to almost all types of nonmelanoma skin cancer and numerous superficial benign skin disorders. Strategies to improve the accumulation of photosensitizer in the skin have been studied in recent years. Although the hydrophilic phthalocyanine zinc compound, zinc phthalocyanine tetrasulfonate (ZnPcSO4) has shown high photodynamic efficiency and reduced phototoxic side effects in the treatment of brain tumors and eye conditions, its use in topical skin treatment is currently limited by its poor skin penetration. In this study, nanodispersions of monoolein (MO)-based liquid crystalline phases were studied for their ability to increase ZnPcSO4 uptake by the skin. Lamellar, hexagonal and cubic crystalline phases were prepared and identified by polarizing light microscopy, and the nanodispersions were analyzed by dynamic light scattering. In vitro skin penetration studies were performed using a Franzs cell apparatus, and the skin uptake was evaluated in vivo in hairless mice. Aqueous dispersions of cubic and hexagonal phases showed particles of nanometer size, approximately 224 ±10 nm and 188 ± 10 nm, respectively. In vitro skin retention experiments revealed higher fluorescence from the ZnPcSO4 in deeper skin layers when this photosensitizer was loaded in the hexagonal nanodispersion system when compared to both the cubic phase nanoparticles and the bulk crystalline phases (lamellar, cubic and hexagonal). The hexagonal nanodispersion showed a similar penetration behavior in animal tests. These results are important findings, suggesting the development of MO liquid crystal nanodispersions as potential delivery systems to enhance the efficacy of topical PDT.


European Journal of Pharmaceutics and Biopharmaceutics | 2017

Anti-HER2 immunoliposomes for co-delivery of paclitaxel and rapamycin for breast cancer therapy

Josimar O. Eloy; Raquel Petrilli; Deise L. Chesca; Fabiano Pinto Saggioro; Robert J. Lee; Juliana Maldonado Marchetti

&NA; Breast cancer is the second leading cause of cancer deaths among women. Paclitaxel (PTX) is used for its treatment, however non‐selectivity, rapid systemic clearance and hypersensitivity to the commercially available formulation are major drawbacks. Rapamycin (RAP), an mTOR inhibitor, acts synergistically with PTX, and thus could be used in combination with it. Drug loading into nanocarriers, particularly liposomes, has proven to enhance efficacy and reduce side‐effects of chemotherapeutic drugs. Within this context, the functionalization of liposomes with antibodies for overexpressed receptors on tumor surface is a potential strategy to increase specificity and reduce side‐effects. Specifically, active targeting of HER2(+) breast cancer cells can be achieved by immunoliposomes consisting of liposomes coated with an anti‐HER2 monoclonal antibody, Trastuzumab. Herein, we have synthesized PTX/RAP co‐loaded immunoliposomes coated with Trastuzumab, performed physicochemical characterization, and evaluated the formulations for cytotoxicity and uptake in 4T1 (triple negative) and SKBR3 (HER2 positive) cell lines. Furthermore, we aimed to compare the immunoliposomes with liposomes and solution of PTX/RAP in vivo, employing human xenograft HER2‐overexpressing tumors in mouse model. The co‐loaded immunoliposomes had a mean particle size of 140.3 nm, a zeta potential of −9.85 mV and drug encapsulation efficiency of 55.87 and 69.51, respectively for PTX and RAP. The functionalization efficiency of Trastuzumab was higher than 70% and the antibody retained HER2 binding activity. Cell studies showed increased cytotoxicity of PTX/RAP for the immunoliposome, compared to the control liposomes in SKBR3 cells, which could be attributed to enhanced uptake mediated through HER2 binding. Furthermore, immunoliposomes were better able to control tumor growth in vivo, with tumor volume averages corresponding to 25.27, 44.38 and 47.78% of tumor volumes of untreated control, PTX/RAP solution and control liposomes, respectively. Taken together, our results support the clinical development of immunoliposomes for targeted delivery of PTX and RAP to HER2‐positive breast cancer. Graphical abstract Figure. No caption available.


Current Pharmaceutical Biotechnology | 2014

Targeted Lipid Nanoparticles for Antisense Oligonucleotide Delivery

Raquel Petrilli; Josimar O. Eloy; Juliana Maldonado Marchetti; Renata Fonseca Vianna Lopez; Robert J. Lee

Antisense oligonucleotides (AS-ODNs) are short, single-stranded DNA molecules designed to bind specifically to a target messenger RNA (mRNA) and down-regulate gene expression. Despite being a promising class of therapeutics for a variety of diseases, they face major hurdles limiting their clinical application, including low intracellular delivery and poor in vivo stability. Among strategies available to enhance delivery, lipid nanoparticles have gained considerable attention. Active targeting of carriers of AS-ODNs is likely to further enhance delivery efficiency. For that, ligands for overexpressed receptors on the cell surface can be linked to the lipid nanoparticle, facilitating intracellular uptake, resulting in improved efficacy and reduced systemic toxicity. These include cell penetrating peptides (CPPs), transferrin, folate, oligosaccharides, polysaccharides and antibodies. Although targeted-lipid nanoparticles have been shown to enhance intracellular delivery and therapeutic effect of AS-ODNs, no clinical evaluation has been conducted yet. Therefore, more efforts are needed to turn these promising tools into clinical products.


European Journal of Pharmaceutical Sciences | 2018

Evaluation of critical parameters for in vitro skin permeation and penetration studies using animal skin models

Fabíola Silva Garcia Praça; Wanessa Silva Garcia Medina; Josimar O. Eloy; Raquel Petrilli; Patrícia Mazureki Campos; Andreia Ascenso; Maria Vitória Lopes Badra Bentley

ABSTRACT In vitro skin permeation/penetration studies may be affected by many sources of variation. Herein, we aimed to investigate the major critical procedures of in vitro skin delivery studies. These experiments were performed with model drugs according to official guidelines. The influence of skin source on penetration studies was studied as well as the use of a cryopreservation agent on skin freezing evaluated by transepidermal water loss, electrical resistance, permeation/penetration profiles and histological changes of the skin. The best condition for tape stripping procedure was validated through the evaluation of the distribution of corneocytes, mass of stratum corneum (SC) removed and amount of protein removed using finger pressure, a 2 kg weight and a roller. The interchangeability of the tape stripping procedures followed by the epidermis and dermis homogenate and the micrometric horizontal cryostat skin sectioning methods were also investigated, besides the effect of different formulations. Noteworthy, different skin sources were able to ensure reliable interchangeability for in vitro permeation studies. Furthermore, an increased penetration was obtained for stored frozen skin compared to fresh skin, even with the addition of a cryoprotectant agent. The best method for tape stripping was the finger pressure followed by the addition of a propylene glycol solvent leading to better SC removal. Finally, no significant difference was found in skin penetration studies performed by different methods suggesting their possible interchangeability. Graphical abstract Figure. No Caption available.


Anti-cancer Agents in Medicinal Chemistry | 2017

Cetuximab Immunoliposomes Enhance Delivery of 5-FU to Skin Squamous Carcinoma Cells

Raquel Petrilli; Josimar O. Eloy; Renata Fonseca Vianna Lopez; Robert J. Lee

BACKGROUND Topical chemotherapy of skin cancers is a promising strategy for reduction of side effects and for improvement of patient compliance. The combination of the chemotherapeutic 5-fluouracil (5-FU) and the anti- EGFR antibody cetuximab is a strategy to inhibit tumor growth. Their skin penetration, however, is hampered by their high hydrophilicity, which could be improved by encapsulation in delivery systems. Furthermore, it is a challenge to encapsulate hydrophilic drugs. The conjugation of an antibody to a liposome, maintaining its activity, is also a difficult task. OBJECTIVE Thus, we aimed to develop 5-FU liposomes and cetuximab-conjugated liposomes (immunoliposomes) of 5- FU to improve drug cytotoxicity against skin cancer cells. METHOD We characterized them by particle size, zeta potential, loading efficiency and antibody integrity. To optimize the loading efficiency of 5-FU, a series of liposomes were prepared, using different methods and drug-to-lipid ratios. RESULTS Liposomes containing DSPC and Chol at drug-to-lipid ratio 0.1 prepared by the thin lipid hydration method resulted in the best 5-FU encapsulation and were chosen to conjugate with cetuximab. Cetuximab was directly coupled to preformed liposomes using DSPE-mPEG2000-Mal as an anchor. In A431 skin carcinoma cells, at 72 h, 5-FU liposomes showed a 5-fold lower IC50 than 5-FU solution. Additionally, 5-FU immunoliposomes resulted in a 4-fold lower cetuximab IC50 than cetuximab solution, demonstrating synergism with a combination index lower than 1 and potential to improve 5-FU and cetuximab cytotoxicity. CONCLUSION Liposomes and immunoliposomes containing 5-FU were developed and cetuximab remained active as demonstrated in cell culture studies.


Anti-cancer Agents in Medicinal Chemistry | 2016

Rapamycin-loaded Immunoliposomes Functionalized with Trastuzumab: A Strategy to Enhance Cytotoxicity to HER2-positive Breast Cancer Cells

Josimar O. Eloy; Raquel Petrilli; Robert W. Brueggemeier; Juliana Maldonado Marchetti; Robert J. Lee

BACKGROUND Liposomes have been employed to improve pharmacokinetics and reduce side effects of drugs. They can be functionalized with antibodies for targeted delivery. While the monoclonal antibody trastuzumab has been employed in the therapy of HER2-positive breast cancer, the resistance developed during treatment has been reported. Rapamycin could be used in combination with trastuzumab for improved therapeutic response. OBJECTIVE In this study, we aimed to develop rapamycin-loaded liposomes and immunoliposomes with trastuzumab, characterize them and evaluate their in vitro cytotoxicity. METHOD Formulations were prepared by the thin film hydration method and immunoliposome was conjugated to antibody by covalent bond. Characterization involved particle size, polydispersity, zeta potential, encapsulation efficiency, functionalization efficiency, DSC and FTIR assays. Cell studies were conducted through the MTT assay. RESULTS SPC:Chol:DSPE-PEG formulation prepared at 1:10 drug to lipid ratio presented high encapsulation efficiency, appropriate particle size, low polydispersity, negative zeta potential and colloidal stability. Rapamycin exhibited intermolecular interactions with lipids and underwent crystallinity reduction. Rapamycin-loaded immunoliposomes were prepared with high trastuzumab functionalization efficiency and antibody stability. Cytotoxicity studies showed that the HER2-positive SK-BR-3 cell line was sensitive to trastuzumab, either as free drug or in the context of immunoliposomes, and is more sensitive to rapamycin than the triple negative MDA-MB-231 cells. For MDA-MB-231, the liposomal rapamycin was more cytotoxic than the free drug. Furthermore, the immunoliposomes showed potent cytotoxicity against SK-BR-3 cells. Finally, rapamycin and trastuzumab exhibited in vitro synergistic effect, particularly through immunoliposomes. CONCLUSION The formulation developed herein has potential for in vivo evaluation.


Archive | 2018

Preparation of Immunoliposomes by Direct Coupling of Antibodies Based on a Thioether Bond

Raquel Petrilli; Josimar O. Eloy; Robert J. Lee; Renata Fonseca Vianna Lopez

Drug delivery is of paramount importance, since the drug needs to be delivered to a specific site, in adequate concentration, avoiding degradation in order to provide therapeutic efficacy. Different nanocarriers have been used over the years for this purpose and liposomes are well-established systems due to the high biocompatibility and the possibility to vehiculate both hydrophilic and lipophilic drugs. In order to circumvent the rapid clearance by the reticuloendothelial system and to avoid the healthy cells exposure to the drug, long circulating liposomes containing polyethyleneglycol (PEG) and functionalized liposomes for targeted delivery have been developed. Immunoliposomes consist of liposomes containing antibodies or antibody fragments attached at the membrane surface. This attachment can be performed using PEG lipids, containing a reactive terminal group such as maleimide and thiolated antibodies. Additionaly, the use of PEG chains as spacers increases antibody-antigen affinity, since the antibody is not shielded by the steric hindrance of PEG and also due to the correct orientation of antibodies for interaction with receptors on cell surface. In this chapter, we describe and discuss in details the protocol to prepare anti-epidermal growth factor receptor (anti-EGFR) and anti-human epidermal growth factor receptor 2 (anti-HER2) liposomes using cetuximab and trastuzumab as antibodies. We present the direct coupling method based on the maleimide thioether reaction for these immunoliposomes preparation and present some characterization steps and in vitro studies in cell culture which can be used for better understanding these nanocarriers.

Collaboration


Dive into the Raquel Petrilli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge