Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Raquel Sánchez-Pérez is active.

Publication


Featured researches published by Raquel Sánchez-Pérez.


Phytochemistry | 2008

β-Glucosidases as detonators of plant chemical defense

Anne Vinther Morant; Kirsten Jørgensen; Charlotte Jørgensen; Suzanne M. Paquette; Raquel Sánchez-Pérez; Birger Lindberg Møller; Søren Bak

Some plant secondary metabolites are classified as phytoanticipins. When plant tissue in which they are present is disrupted, the phytoanticipins are bio-activated by the action of beta-glucosidases. These binary systems--two sets of components that when separated are relatively inert--provide plants with an immediate chemical defense against protruding herbivores and pathogens. This review provides an update on our knowledge of the beta-glucosidases involved in activation of the four major classes of phytoanticipins: cyanogenic glucosides, benzoxazinoid glucosides, avenacosides and glucosinolates. New aspects of the role of specific proteins that either control oligomerization of the beta-glucosidases or modulate their product specificity are discussed in an evolutionary perspective.


Plant Physiology | 2008

Bitterness in Almonds

Raquel Sánchez-Pérez; Kirsten Jørgensen; Carl Erik Olsen; Federico Dicenta; Birger Lindberg Møller

Bitterness in almond (Prunus dulcis) is determined by the content of the cyanogenic diglucoside amygdalin. The ability to synthesize and degrade prunasin and amygdalin in the almond kernel was studied throughout the growth season using four different genotypes for bitterness. Liquid chromatography-mass spectrometry analyses showed a specific developmentally dependent accumulation of prunasin in the tegument of the bitter genotype. The prunasin level decreased concomitant with the initiation of amygdalin accumulation in the cotyledons of the bitter genotype. By administration of radiolabeled phenylalanine, the tegument was identified as a specific site of synthesis of prunasin in all four genotypes. A major difference between sweet and bitter genotypes was observed upon staining of thin sections of teguments and cotyledons for β-glucosidase activity using Fast Blue BB salt. In the sweet genotype, the inner epidermis in the tegument facing the nucellus was rich in cytoplasmic and vacuolar localized β-glucosidase activity, whereas in the bitter cultivar, the β-glucosidase activity in this cell layer was low. These combined data show that in the bitter genotype, prunasin synthesized in the tegument is transported into the cotyledon via the transfer cells and converted into amygdalin in the developing almond seed, whereas in the sweet genotype, amygdalin formation is prevented because the prunasin is degraded upon passage of the β-glucosidase-rich cell layer in the inner epidermis of the tegument. The prunasin turnover may offer a buffer supply of ammonia, aspartic acid, and asparagine enabling the plants to balance the supply of nitrogen to the developing cotyledons.


Plant Molecular Biology Reporter | 2014

Quantitative Trait Loci (QTL) and Mendelian Trait Loci (MTL) Analysis in Prunus: a Breeding Perspective and Beyond

Juan Alfonso Salazar; David Ruiz; José Antonio Campoy; Raquel Sánchez-Pérez; Carlos H. Crisosto; Pedro J. Martínez-García; Anna Blenda; Sook Jung; Dorrie Main; Pedro Martínez-Gómez; Manuel Rubio

Trait loci analysis, a classic procedure in quantitative (quantitative trait loci, QTL) and qualitative (Mendelian trait loci, MTL) genetics, continues to be the most important approach in studies of gene labeling in Prunus species from the Rosaceae family. Since 2011, the number of published Prunus QTLs and MTLs has doubled. With increased genomic resources, such as whole genome sequences and high-density genotyping platforms, trait loci analysis can be more readily converted to markers that can be directly utilized in marker-assisted breeding. To provide this important resource to the community and to integrate it with other genomic, genetic, and breeding data, a global review of the QTLs and MTLs linked to agronomic traits in Prunus has been performed and the data made available in the Genome Database for Rosaceae. We describe detailed information on 760 main QTLs and MTLs linked to a total of 110 agronomic traits related to tree development, pest and disease resistance, flowering, ripening, and fruit and seed quality. Access to these trait loci enables the application of this information in the post-genomic era, characterized by the availability of a high-quality peach reference genome and new high-throughput DNA and RNA analysis technologies.


Euphytica | 2004

Identification of S-alleles in almond using multiplex PCR

Raquel Sánchez-Pérez; Federico Dicenta; Pedro Martínez-Gómez

The S-genotypes of eight almond (Prunus dulcis Miller (D.A. Webb)) cultivars from different geographical origins and of nine new selections from the CEBAS-CSIC (Murcia, Spain) breeding program were determined using single and multiplex PCR with different sets of specific oligonucleotide primers. The results of PCR using the AS1II- and AmyC5R-specific primers showed amplification in a single reaction of 10 different self-incompatibility alleles and of the self-compatibility allele Sf. However, the amplified fragments of the Sf allele were of similar sizes to those amplified from the S3 self-incompatibility allele. For this reason, a specific PCR primer CEBASf was designed from the intron sequence of Sf. A multiplex-PCR reaction using the AS1II, CEBASf and AmyC5R primers permitted unequivocal identification of the 10 self-incompatibility alleles and of the self-compatibility allele. Multiplex PCR opens the possibility to identify new S-alleles using different sets of primers. The applications of these PCR markers in the almond-breeding programs are discussed.


Frontiers in Plant Science | 2014

Recent advancements to study flowering time in almond and other Prunus species

Raquel Sánchez-Pérez; Jorge Del Cueto; Federico Dicenta; Pedro Martínez-Gómez

Flowering time is an important agronomic trait in almond since it is decisive to avoid the late frosts that affect production in early flowering cultivars. Evaluation of this complex trait is a long process because of the prolonged juvenile period of trees and the influence of environmental conditions affecting gene expression year by year. Consequently, flowering time has to be studied for several years to have statistical significant results. This trait is the result of the interaction between chilling and heat requirements. Flowering time is a polygenic trait with high heritability, although a major gene Late blooming (Lb) was described in “Tardy Nonpareil.” Molecular studies at DNA level confirmed this polygenic nature identifying several genome regions (Quantitative Trait Loci, QTL) involved. Studies about regulation of gene expression are scarcer although several transcription factors have been described as responsible for flowering time. From the metabolomic point of view, the integrated analysis of the mechanisms of accumulation of cyanogenic glucosides and flowering regulation through transcription factors open new possibilities in the analysis of this complex trait in almond and in other Prunus species (apricot, cherry, peach, plum). New opportunities are arising from the integration of recent advancements including phenotypic, genetic, genomic, transcriptomic, and metabolomics studies from the beginning of dormancy until flowering.


Plant Physiology | 2012

Prunasin Hydrolases during Fruit Development in Sweet and Bitter Almonds

Raquel Sánchez-Pérez; Fara Sáez Belmonte; Jonas Borch; Federico Dicenta; Birger Lindberg Møller; Kirsten Jørgensen

Amygdalin is a cyanogenic diglucoside and constitutes the bitter component in bitter almond (Prunus dulcis). Amygdalin concentration increases in the course of fruit formation. The monoglucoside prunasin is the precursor of amygdalin. Prunasin may be degraded to hydrogen cyanide, glucose, and benzaldehyde by the action of the β-glucosidase prunasin hydrolase (PH) and mandelonitirile lyase or be glucosylated to form amygdalin. The tissue and cellular localization of PHs was determined during fruit development in two sweet and two bitter almond cultivars using a specific antibody toward PHs. Confocal studies on sections of tegument, nucellus, endosperm, and embryo showed that the localization of the PH proteins is dependent on the stage of fruit development, shifting between apoplast and symplast in opposite patterns in sweet and bitter cultivars. Two different PH genes, Ph691 and Ph692, have been identified in a sweet and a bitter almond cultivar. Both cDNAs are 86% identical on the nucleotide level, and their encoded proteins are 79% identical to each other. In addition, Ph691 and Ph692 display 92% and 86% nucleotide identity to Ph1 from black cherry (Prunus serotina). Both proteins were predicted to contain an amino-terminal signal peptide, with the size of 26 amino acid residues for PH691 and 22 residues for PH692. The PH activity and the localization of the respective proteins in vivo differ between cultivars. This implies that there might be different concentrations of prunasin available in the seed for amygdalin synthesis and that these differences may determine whether the mature almond develops into bitter or sweet.


Omics A Journal of Integrative Biology | 2012

Clarifying omics concepts, challenges, and opportunities for Prunus breeding in the postgenomic era.

Pedro Martínez-Gómez; Raquel Sánchez-Pérez; Manuel Rubio

The recent sequencing of the complete genome of the peach, together with the availability of new high-throughput genome, transcriptome, proteome, and metabolome analysis technologies, offers new possibilities for Prunus breeders in what has been described as the postgenomic era. In this context, new biological challenges and opportunities for the application of these technologies in the development of efficient marker-assisted selection strategies in Prunus breeding include genome resequencing using DNA-Seq, the study of RNA regulation at transcriptional and posttranscriptional levels using tilling microarray and RNA-Seq, protein and metabolite identification and annotation, and standardization of phenotype evaluation. Additional biological opportunities include the high level of synteny among Prunus genomes. Finally, the existence of biases presents another important biological challenge in attaining knowledge from these new high-throughput omics disciplines. On the other hand, from the philosophical point of view, we are facing a revolution in the use of new high-throughput analysis techniques that may mean a scientific paradigm shift in Prunus genetics and genomics theories. The evaluation of scientific progress is another important question in this postgenomic context. Finally, the incommensurability of omics theories in the new high-throughput analysis context presents an additional philosophical challenge.


Genetic Resources and Crop Evolution | 2006

Level and Transmission of Genetic Heterozygosity in Apricot (Prunus armeniaca L.) Explored Using Simple Sequence Repeat Markers

Raquel Sánchez-Pérez; Pedro Martínez-Gómez; Federico Dicenta; José Egea; David Ruiz

In this study, 17 peach simple sequence repeat (SSR) sequences were used in the exploration of the genetic heterozygosity level of several apricot cultivars from Spain, France, Greece, and the USA, and 23 descendants. The genotypes can be classified in three groups as a function of their genetic heterozygosity (1) local cultivars from Murcia (Spain) (‘Gitanos’ and ‘Pepito del Rubio’) and several descendants from crosses among these cultivars, with very low genetic heterozygosities (less than 0.30); (2) cultivars from France and Spain (‘Moniquí’, ‘Currot’ and ‘Bergeron’) and several descendants, with intermediate levels of genetic heterozygosity (around 0.45); and (3) cultivars ‘Orange Red’ and ‘Goldrich’ from North America and ‘Lito’ from Greece, with the remaining descendants, having genetic heterozygosities higher than 0.50. The results showed the high increase of genetic heterozygosity in the case of descendants from complementary crosses. The use of cultivars from North America could increase greatly the genetic heterozygosity in the Spanish apricot breeding programs, enlarging the genetic variability of the local cultivars. On the other hand, in the case of transgressive crosses among local Spanish cultivars, the increase of genetic heterozygosity was much lower.


Plant Journal | 2009

Tissue and cellular localization of individual β‐glycosidases using a substrate‐specific sugar reducing assay

Raquel Sánchez-Pérez; Kirsten Jørgensen; Mohammed Saddik Motawia; Federico Dicenta; Birger Lindberg Møller

Traditional methods to localize beta-glycosidase activity in tissue sections have been based on incubation with the general substrate 6-bromo-2-naphthyl-beta-d-glucopyranoside. When hydrolysed in the presence of salt zinc compounds, 6-bromo-2-naphthyl-beta-d-glucopyranoside affords the formation of an insoluble coloured product. This technique does not distinguish between different beta-glycosidases present in the tissue. To be able to monitor the occurrence of individual beta-glycosidases in different tissues and cell types, we have developed a versatile histochemical method that can be used for localization of any beta-glycosidase that upon incubation with its specific substrate releases a reducing sugar. Experimentally, the method is based on hydrolysis of the specific substrate followed by oxidation of the sugar released by a tetrazolium salt (2,3,5-triphenyltetrazolium chloride) that forms a red insoluble product when reduced. The applicability of the method was demonstrated by tissue and cellular localization of two beta-glucosidases, amygdalin hydrolase and prunasin hydrolase, in different tissues and cell types of almond. In those cases where the analysed tissue had a high content of reducing sugars, this resulted in strong staining of the background. This interfering staining of the background was avoided by prior incubation with sodium borohydride. The specificity of the devised method was demonstrated in a parallel localization study using a specific antibody towards prunasin hydrolase.


Frontiers in Plant Science | 2017

Cyanogenic Glucosides and Derivatives in Almond and Sweet Cherry Flower Buds from Dormancy to Flowering

Jorge Del Cueto; Irina A. Ionescu; Martina Pičmanová; Oliver Gericke; Mohammed Saddik Motawia; Carl Erik Olsen; José Antonio Campoy; Federico Dicenta; Birger Lindberg Møller; Raquel Sánchez-Pérez

Almond and sweet cherry are two economically important species of the Prunus genus. They both produce the cyanogenic glucosides prunasin and amygdalin. As part of a two-component defense system, prunasin and amygdalin release toxic hydrogen cyanide upon cell disruption. In this study, we investigated the potential role within prunasin and amygdalin and some of its derivatives in endodormancy release of these two Prunus species. The content of prunasin and of endogenous prunasin turnover products in the course of flower development was examined in five almond cultivars – differing from very early to extra-late in flowering time – and in one sweet early cherry cultivar. In all cultivars, prunasin began to accumulate in the flower buds shortly after dormancy release and the levels dropped again just before flowering time. In almond and sweet cherry, the turnover of prunasin coincided with increased levels of prunasin amide whereas prunasin anitrile pentoside and β-D-glucose-1-benzoate were abundant in almond and cherry flower buds at certain developmental stages. These findings indicate a role for the turnover of cyanogenic glucosides in controlling flower development in Prunus species.

Collaboration


Dive into the Raquel Sánchez-Pérez's collaboration.

Top Co-Authors

Avatar

Federico Dicenta

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Pedro Martínez-Gómez

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Birger Lindberg Møller

University of Copenhagen Faculty of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pere Arús

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Jorge Del Cueto

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Ruiz

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

José Egea

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Manuel Rubio

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge