Raquel Vaquer-Sunyer
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Raquel Vaquer-Sunyer.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Raquel Vaquer-Sunyer; Carlos M. Duarte
Hypoxia is a mounting problem affecting the worlds coastal waters, with severe consequences for marine life, including death and catastrophic changes. Hypoxia is forecast to increase owing to the combined effects of the continued spread of coastal eutrophication and global warming. A broad comparative analysis across a range of contrasting marine benthic organisms showed that hypoxia thresholds vary greatly across marine benthic organisms and that the conventional definition of 2 mg O2/liter to designate waters as hypoxic is below the empirical sublethal and lethal O2 thresholds for half of the species tested. These results imply that the number and area of coastal ecosystems affected by hypoxia and the future extent of hypoxia impacts on marine life have been generally underestimated.
Hydrobiologia | 2009
Daniel J. Conley; Jacob Carstensen; Raquel Vaquer-Sunyer; Carlos M. Duarte
Hypoxia is one of the common effects of eutrophication in coastal marine ecosystems and is becoming an increasingly prevalent problem worldwide. The causes of hypoxia are associated with excess nutrient inputs from both point and non-point sources, although the response of coastal marine ecosystems is strongly modulated by physical processes such as stratification and mixing. Changes in climate, particularly temperature, may also affect the susceptibility of coastal marine ecosystems to hypoxia. Hypoxia is a particularly severe disturbance because it causes death of biota and catastrophic changes in the ecosystem. Bottom water oxygen deficiency not only influences the habitat of living resources but also the biogeochemical processes that control nutrient concentrations in the water column. Increased phosphorus fluxes from sediments into overlying waters occur with hypoxia. In addition, reductions in the ability of ecosystems to remove nitrogen through denitrification and anaerobic ammonium oxidation may be related to hypoxia and could lead to acceleration in the rate of eutrophication. Three large coastal marine ecosystems (Chesapeake Bay, Northern Gulf of Mexico, and Danish Straits) all demonstrate thresholds whereby repeated hypoxic events have led to an increase in susceptibility of further hypoxia and accelerated eutrophication. Once hypoxia occurs, reoccurrence is likely and may be difficult to reverse. Therefore, elucidating ecosystem thresholds of hypoxia and linking them to nutrient inputs are necessary for the management of coastal marine ecosystems. Finally, projected increases in warming show an increase in the susceptibility of coastal marine ecosystems to hypoxia such that hypoxia will expand.
Environmental Research Letters | 2011
Alexandra Steckbauer; Carlos M. Duarte; Jacob Carstensen; Raquel Vaquer-Sunyer; Daniel J. Conley
Coastal hypoxia is increasing in the global coastal zone, where it is recognized as a major threat to biota. Managerial efforts to prevent hypoxia and achieve recovery of ecosystems already affected by hypoxia are largely based on nutrient reduction plans. However, these managerial efforts need to be informed by predictions on the thresholds of hypoxia (i.e. the oxygen levels required to conserve biodiversity) as well as the timescales for the recovery of ecosystems already affected by hypoxia. The thresholds for hypoxia in coastal ecosystems are higher than previously thought and are not static, but regulated by local and global processes, being particularly sensitive to warming. The examination of recovery processes in a number of coastal areas managed for reducing nutrient inputs and, thus, hypoxia (Northern Adriatic; Black Sea; Baltic Sea; Delaware Bay; and Danish Coastal Areas) reveals that recovery timescales following the return to normal oxygen conditions are much longer than those of loss following the onset of hypoxia, and typically involve decadal timescales. The extended lag time for ecosystem recovery from hypoxia results in non-linear pathways of recovery due to hysteresis and the shift in baselines, affecting the oxygen thresholds for hypoxia through time.
Polar Biology | 2010
Raquel Vaquer-Sunyer; Carlos M. Duarte; Rocío Santiago; Paul Wassmann; Marit Reigstad
The Arctic Ocean is the region on Earth supporting the steepest warming rate and is also particularly vulnerable due to the vanishing ice cover. Intense warming in the Arctic has strong implications for biological activity and the functioning of an Arctic Ocean deprived of ice cover in summer. We evaluated the impact of increasing temperature on respiration rates of surface marine planktonic communities in the European Arctic sector, a property constraining the future role of the Arctic Ocean in the CO2 balance of the atmosphere. We performed experiments under four different temperature elevation regimes (in situ, +2, +4 and +6°C above the temperature of the sampled water) during cruises conducted in the Fram Strait region and off Svalbard during late fall–early winter, spring and summer. During late fall–early winter, where only three different temperatures were used, no response to warming was observed, whereas respiration rates increased in response to warming in spring and summer, although with variable strength.
Environmental Science & Technology | 2015
Raquel Vaquer-Sunyer; Daniel J. Conley; Sarala Devi Muthusamy; Markus V. Lindh; Jarone Pinhassi; Emma S. Kritzberg
Increased anthropogenic pressures on coastal marine ecosystems in the last century are threatening their biodiversity and functioning. Global warming and increases in nutrient loadings are two major stressors affecting these systems. Global warming is expected to increase both atmospheric and water temperatures and increase precipitation and terrestrial runoff, further increasing organic matter and nutrient inputs to coastal areas. Dissolved organic nitrogen (DON) concentrations frequently exceed those of dissolved inorganic nitrogen in aquatic systems. Many components of the DON pool have been shown to supply nitrogen nutrition to phytoplankton and bacteria. Predictions of how global warming and eutrophication will affect metabolic rates and dissolved oxygen dynamics in the future are needed to elucidate their impacts on biodiversity and ecosystem functioning. Here, we experimentally determine the effects of simultaneous DON additions and warming on planktonic community metabolism in the Baltic Sea, the largest coastal area suffering from eutrophication-driven hypoxia. Both bacterioplankton community composition and metabolic rates changed in relation to temperature. DON additions from wastewater treatment plant effluents significantly increased the activation energies for community respiration and gross primary production. Activation energies for community respiration were higher than those for gross primary production. Results support the prediction that warming of the Baltic Sea will enhance planktonic respiration rates faster than it will for planktonic primary production. Higher increases in respiration rates than in production may lead to the depletion of the oxygen pool, further aggravating hypoxia in the Baltic Sea.
Frontiers in Marine Science | 2014
Sergio Ruiz-Halpern; Raquel Vaquer-Sunyer; Carlos M. Duarte
Coastal areas play an important role on carbon cycling. Elucidating the dynamics on the production, transport and fate of organic carbon is relevant to gain a better understanding of the role coastal areas play in the global carbon budget. Here, we assess the metabolic status and associated organic carbon fluxes of a semi-enclosed Mediterranean bay supporting a meadow of Caulerpa prolifera. We test whether the EDOC pool is a significant component of the organic carbon pool and associated fluxes in this ecosystem. The Bay of Portocolom was in net metabolic balance on a yearly basis, but heterotrophic during the summer months. Community respiration (CR) was positively correlated to C. prolifera biomass, while net community production (NCP) had a negative correlation. The benthic compartment represented, on average, 72.6 ± 5.2 % of CR and 86.8 ± 4.5 % of gross primary production (GPP). Dissolved organic carbon (DOC) production peaked in summer and was always positive, with the incubations performed in the dark almost doubling the flux of those performed in the light. Exchangeable dissolved organic carbon (EDOC), however, oscillated between production and uptake, being completely recycled within the system and representing around 14% of the DOC flux. The pools of bottom and surface DOC were high for an oligotrophic environment, and were positively correlated to the pool of EDOC. Thus, despite being in metabolic balance, this ecosystem acted as a conduit for organic carbon (OC), as it is able to export OC to adjacent areas derived from allochtonous inputs during heterotrophic conditions. These inputs likely come from groundwater discharge, human activity in the watershed, delivered to the sediments through the high capacity of C. prolifera to remove particles from the water column, and from the air-water exchange of EDOC, demonstrating that these communities are a major contributor to the cycling of OC in coastal embayments.
Global Biogeochemical Cycles | 2013
Maria Ll. Calleja; Carlos M. Duarte; Marta Álvarez; Raquel Vaquer-Sunyer; Susana Agustí; Gerhard J. Herndl
Global Change Biology | 2011
Raquel Vaquer-Sunyer; Carlos M. Duarte
Limnology and Oceanography | 2010
Raquel Vaquer-Sunyer; Carlos M. Duarte
Ecosystems | 2010
Gotzon Basterretxea; Antonio Tovar-Sánchez; Aaron J. Beck; Pere Masqué; Henry J. Bokuniewicz; Ruth Coffey; Carlos M. Duarte; Jordi Garcia-Orellana; E. Garcia-Solsona; Lorena Martinez-Ribes; Raquel Vaquer-Sunyer