Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rasedee Abdullah is active.

Publication


Featured researches published by Rasedee Abdullah.


Chemico-Biological Interactions | 2010

Potential chemoprevention of diethylnitrosamine-initiated and 2-acetylaminofluorene-promoted hepatocarcinogenesis by zerumbone from the rhizomes of the subtropical ginger (Zingiber zerumbet)

Manal Mohamed Elhassan Taha; Ahmad Bustamam Abdul; Rasedee Abdullah; Tengku Azmi Tengku Ibrahim; Siddig Ibrahim Abdelwahab; Syam Mohan

Zerumbone (ZER), a monosesquiterpene found in the subtropical ginger (Zingiber zerumbet Smith), possesses antiproliferative properties to several cancer cells lines, including the cervical, skin and colon cancers. In this study, the antitumourigenic effects of ZER were assessed in rats induced to develop liver cancer with a single intraperitoneal injection of diethylnitrosamine (DEN, 200 mg/kg) and dietary 2-acetylaminofluorene (AAF) (0.02%). The rats also received intraperitoneal ZER injections at 15, 30 or 60 mg/kg body wt. twice a week for 11 weeks, beginning week four post-DEN injection. The hepatocytes of positive control (DEN/AAF) rats were smaller with larger hyperchromatic nuclei than normal, showing cytoplasmic granulation and intracytoplasmic violaceous material, which were characteristics of hepatocarcinogenesis. Histopathological evaluations showed that ZER protects the rat liver from the carcinogenic effects of DEN and AAF. Serum alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (AP) and alpha-fetoprotein (AFP) were significantly lower (P<0.05) in ZER-treated than untreated rats with liver cancer. The liver malondialdehyde (MDA) concentrations significantly (P<0.05) increased in the untreated DEN/AAF rats indicating hepatic lipid peroxidation. There was also significant (P<0.05) reduction in the hepatic tissue glutathione (GSH) concentrations. The liver sections of untreated DEN/AAF rats also showed abundant proliferating cell nuclear antigen (PCNA), while in ZER-treated rats the expression of this antigen was significantly (P<0.05) lowered. By the TUNEL assay, there were significantly (P<0.05) higher numbers of apoptotic cells in DEN/AAF rats treated with ZER than those untreated. Zerumbone treatment had also increased Bax and decreased Bcl-2 protein expression in the livers of DEN/AAF rats, which suggested increased apoptosis. Even after 11 weeks of ZER treatment, there was no evidence of abnormality in the liver of normal rats. This study suggests that ZER reduces oxidative stress, inhibits proliferation, induces mitochondria-regulated apoptosis, thus minimising DEN/AAF-induced carcinogenesis in rat liver. Therefore, ZER has great potential in the treatment of liver cancers.


International Journal of Nanomedicine | 2013

Thymoquinone-loaded nanostructured lipid carriers: preparation, gastroprotection, in vitro toxicity, and pharmacokinetic properties after extravascular administration

Siddig Ibrahim Abdelwahab; Bassem Yousef Sheikh; Manal Mohamed Elhassan Taha; Chee Wun How; Rasedee Abdullah; Umar Yagoub; Rashad El-Sunousi; Eltayeb Em Eid

Background Nanostructured lipid carriers (NLCs), composed of solid and liquid lipids, and surfactants are potentially good colloidal drug carriers. Thymoquinone is the main bioactive compound of Nigella sativa. In this study, the preparation, gastroprotective effects, and pharmacokinetic (PK) properties of thymoquinone (TQ)-loaded NLCs (TQNLCs) were evaluated. Method TQNLCs were prepared using hydrogenated palm oil (Softisan® 154), olive oil, and phosphatidylcholine for the lipid phase and sorbitol, polysorbate 80, thimerosal, and double distilled water for the liquid lipid material. A morphological assessment of TQNLCs was performed using various methods. Analysis of the ulcer index, hydrogen concentration, mucus content, and biochemical and histochemical studies confirmed that the loading of TQ into the NLCs significantly improved the gastroprotective activity of this natural compound against the formation of ethanol-induced ulcers. The safety of TQNLC was tested on WRL68 liver normal cells with cisplatin as a positive control. Results The average diameter of the TQNLCs was 75 ± 2.4 nm. The particles had negative zeta potential values of −31 ± 0.1 mV and a single melting peak of 55.85°C. Immunohistochemical methods revealed that TQNLCs inhibited the formation of ethanol-induced ulcers through the modulation of heat shock protein-70 (Hsp70). Acute hepatotoxic effects of the TQNLCs were not observed in rats or normal human liver cells (WRL-68). After validation, PK studies in rabbits showed that the PK properties of TQ were improved and indicated that the drug behaves linearly. The Tmax, Cmax, and elimination half-life of TQ were found to be 3.96 ± 0.19 hours, 4811.33 ± 55.52 ng/mL, and 4.4933 ± 0.015 hours, respectively, indicating that TQ is suitable for extravascular administration. Conclusion NLCs could be a promising vehicle for the oral delivery of TQ and improve its gastroprotective properties.


Journal of Ethnopharmacology | 2013

Dentatin isolated from Clausena excavata induces apoptosis in MCF-7 cells through the intrinsic pathway with involvement of NF-κB signalling and G0/G1 cell cycle arrest: a bioassay-guided approach.

Ismail Adam Arbab; Ahmad Bustamam Abdul; Mohd Aspollah Sukari; Rasedee Abdullah; Suvitha Syam; Behnam Kamalidehghan; Mohamed Yousif Ibrahim; Manal Mohamed Elhassan Taha; Siddig Ibrahim Abdelwahab; Hapipah Mohd Ali; Syam Mohan

ETHNOPHARMACOLOGICAL RELEVANCE Clausena excavata Burm. f. has been used in folk medicines in eastern Thailand for the treatment of cancer. MATERIALS AND METHODS To investigate the apoptosis mechanism, we isolated dentatin (DTN) from this plant using a bioassay-guided approach. DTN-induced cytotoxicity was observed with the MTT assay. Acridine orange/propidium iodide staining was used to detect cells in early apoptosis and high content screening (HCS) to observe nuclear condensation, cell permeability, mitochondrial membrane potential (MMP) and cytochrome c release. Apoptosis was confirmed with a clonogenic assay, DNA laddering and caspase 3/7 and 9 assays. Reactive oxygen species (ROS) formation, Bcl-2 and Bax expression, and cell cycle arrest were also investigated. The involvement of nuclear factor-kappa B (NF-κB) was analysed with the HCS assay. RESULTS A significant increase in chromatin condensation in the cell nucleus was observed by fluorescence analysis. Apoptosis was confirmed by the reduced number of colonies in the clonogenic assay and the increased number of cellular DNA breaks in treated cells observed as a DNA ladder. Treatment of MCF-7 cells with DTN encouraged apoptosis with cell death-transducing signals that reduced MMP by down-regulation of Bcl-2 and up-regulation of Bax, triggering cytochrome c release from the mitochondria to the cytosol. The released cytochrome c triggered the activation of caspase 9 followed by the executioner caspase 3/7. DTN treatment significantly arrested MCF-7 cells at the G0/G1 phase (p<0.05) and ROS was significantly elevated. Moreover, DTN significantly blocked the induced translocation of NF-κB from cytoplasm to nucleus. CONCLUSION Together, the results demonstrated that the DTN isolated from Clausena excavata inhibited the proliferation of MCF-7 cells, leading to cell cycle arrest and programmed cell death, which was confirmed to occur through the mitochondrial pathway with involvement of the NF-κB signalling pathway.


Leukemia Research | 2010

Typhonium flagelliforme inhibits the proliferation of murine leukemia WEHI-3 cells in vitro and induces apoptosis in vivo

Syam Mohan; Ahmad Bustamam Abdul; Siddig Ibrahim Abdelwahab; Adel Sharaf Al-Zubairi; Mohamed Aspollah Sukari; Rasedee Abdullah; Manal Mohamed Elhassan Taha; Ng Kuan Beng; Nurbaity Mohd Isa

Typhonium flagelliforme (TF) is a tropical plant, traditionally used by the ethnic population of Malaysia for the cure of various cancers. This plant had shown to induce antiproliferative effect as well as apoptosis in cancer cells. However, there is no available information to address that TF affects murine leukemia cells in vitro and in vivo. Here, we investigated in vitro and in vivo effects of TF on murine leukemia WEHI-3 cells. It was found that the growth of leukemia cells in vitro was inhibited by the various extracts of TF. Among these fractions, the dichloromethane (DCM) tuber extracts of TF showed the lowest IC(50) (24.0 ± 5.2 μg/ml) and had demonstrated apoptogenic effect when observed under fluorescent microscope. We investigated the in vivo effects of DCM tuber extracts of TF on murine leukemia cells, and the results showed that the counts of immature granulocytes and monocytes were significantly decreased in peripheral blood of BALB/c leukemia mice after the oral administration of DCM tuber extracts of TF for 28 days with three doses (200, 400 and 800 mg/kg). These results were confirmed by observing the spleen histopathology and morphology of enlarged spleen and liver in leukemia mice when compared with the control. Furthermore, the cell death mechanism in the spleen tissue of treated mice was found via apoptosis.


Evidence-based Complementary and Alternative Medicine | 2011

In Vitro Ultramorphological Assessment of Apoptosis on CEMss Induced by Linoleic Acid-Rich Fraction from Typhonium flagelliforme Tuber

Syam Mohan; Ahmad Bustamam; Siddig Ibrahim; Adel Sharaf Al-Zubairi; Mohammed Aspollah; Rasedee Abdullah; Manal Mohamed Elhassan

The plant Typhonium flagelliforme, commonly known as “rodent tuber” in Malaysia, is often used as a health supplement and traditional remedy for alternative cancer therapies, including leukemia. This study aimed to evaluate in vitro anti-leukemic activity of dichloromethane extract/fraction number 7 (DCM/F7) from T. flagelliforme tuber on human T4 lymphoblastoid (CEMss) cell line. The DCM extract of tuber has been fractionated by column chromatography. The obtained fractions were evaluated for its cytotoxicity toward CEMss cells as well as human primary blood lymphocytes (PBLs). Assessment of apoptosis produced by the most active fraction was evaluated by various microscopic techniques and further confirmation of apoptosis was done by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Phytochemical screening was done by gas chromatography-mass spectrometry (GC-MS). The results shows that 7 out of 12 fractions showed significant cytotoxicity against the selected cell line CEMss, in which fractions DCM/F7, DCM/F11 and DCM/F12 showed exceptional activity with 3, 5 and 6.2 μg ml−1, respectively. Further studies in the non-cancerous PBL exhibited significant selectivity of DCM/F7 compared to other fractions. Cytological observations showed chromatin condensation, cell shrinkage, abnormalities of cristae, membrane blebbing, cytoplasmic extrusions and formation of apoptotic bodies as confirmed collectively by double-staining of acridine orange (AO)/propidium iodide (PI), SEM and TEM. In addition, DCM/F7 has increased the cellular DNA breaks on treated cells. GC-MS revealed that DCM/F7 contains linoleic acid, hexadecanoic acid and 9-hexadecanoic acid. The present results indicate that T. flagelliforme possess a valuable anti-leukemic effect and was able to produce distinctive morphological features of cell death that corresponds to apoptosis.


PLOS ONE | 2015

Induction of Apoptosis in MCF-7 Cells via Oxidative Stress Generation, Mitochondria-Dependent and Caspase-Independent Pathway by Ethyl Acetate Extract of Dillenia suffruticosa and Its Chemical Profile.

Yin Sim Tor; Latifah Saiful Yazan; Jhi Biau Foo; Agustono Wibowo; Norsharina Ismail; Yoke Kqueen Cheah; Rasedee Abdullah; Maznah Ismail; Intan Safinar Ismail; Swee Keong Yeap

Dillenia suffruticosa, which is locally known as Simpoh air, has been traditionally used to treat cancerous growth. The ethyl acetate extract of D. suffruticosa (EADs) has been shown to induce apoptosis in MCF-7 breast cancer cells in our previous study. The present study aimed to elucidate the molecular mechanisms involved in EADs-induced apoptosis and to identify the major compounds in the extract. EADs was found to promote oxidative stress in MCF-7 cells that led to cell death because the pre-treatment with antioxidants α-tocopherol and ascorbic acid significantly reduced the cytotoxicity of the extract (P<0.05). DCFH-DA assay revealed that treatment with EADs attenuated the generation of intracellular ROS. Apoptosis induced by EADs was not inhibited by the use of caspase-inhibitor Z-VAD-FMK, suggesting that the cell death is caspase-independent. The use of JC-1 dye reflected that EADs caused disruption in the mitochondrial membrane potential. The related molecular pathways involved in EADs-induced apoptosis were determined by GeXP multiplex system and Western blot analysis. EADs is postulated to induce cell cycle arrest that is p53- and p21-dependent based on the upregulated expression of p53 and p21 (P<0.05). The expression of Bax was upregulated with downregulation of Bcl-2 following treatment with EADs. The elevated Bax/Bcl-2 ratio and the depolarization of mitochondrial membrane potential suggest that EADs-induced apoptosis is mitochondria-dependent. The expression of oxidative stress-related AKT, p-AKT, ERK, and p-ERK was downregulated with upregulation of JNK and p-JNK. The data indicate that induction of oxidative-stress related apoptosis by EADs was mediated by inhibition of AKT and ERK, and activation of JNK. The isolation of compounds in EADs was carried out using column chromatography and elucidated using the nuclear resonance magnetic analysis producing a total of six compounds including 3-epimaslinic acid, kaempferol, kaempferide, protocatechuic acid, gallic acid and β-sitosterol-3-O-β-D-glucopyranoside. The cytotoxicity of the isolated compounds was determined using MTT assay. Gallic acid was found to be most cytotoxic against MCF-7 cell line compared to others, with IC50 of 36 ± 1.7 μg/mL (P<0.05). In summary, EADs generated oxidative stress, induced cell cycle arrest and apoptosis in MCF-7 cells by regulating numerous genes and proteins that are involved in the apoptotic signal transduction pathway. Therefore, EADs has the potential to be developed as an anti-cancer agent against breast cancer.


Journal of Ethnopharmacology | 2014

β Mangostin suppress LPS-induced inflammatory response in RAW 264.7 macrophages in vitro and carrageenan-induced peritonitis in vivo

Suvitha Syam; Ahmad Bustamam; Rasedee Abdullah; Mohamed Aspollah Sukari; Najihah Mohd Hashim; Syam Mohan; Chung Yeng Looi; Won Fen Wong; Maizatul Akmal Yahayu; Siddig Ibrahim Abdelwahab

ETHNOPHARMACOLOGICAL RELEVANCE The fruit hull of Garcinia mangostana Linn. has been used in traditional medicine for treatment of various inflammatory diseases. Hence, this study aims to investigate the in vitro and in vivo anti-inflammatory effect of β mangostin (βM), a major compound present in Garcinia mangostana. MATERIALS AND METHODS The in silico analysis of inflammatory mediators such as cyclooxygenase (COX) and nuclear factor-kappa B (NF-kB) were performed via molecular docking. Further evaluation of anti-inflammatory effect was conducted in lipopolysaccharide (LPS) induced RAW 264.7 macrophages. Suppression of activated NF-kB was analyzed by high content screening. βM triggered inhibition of COX-1 and COX-2 in vitro were studied using biochemical kit. The in vivo model used in this study was carrageenan-induced peritonitis model, where reduction in carrageenan-induced peritonitis is measured by leukocyte migration and vascular permeability. In addition, the evaluation of βM׳s effect on carrageenan induced TNF-α and IL-1β release on peritoneal fluid was also carried out. RESULTS Treatment with βM could inhibit the LPS-induced NO production but not the viability of RAW 264.7. Similarly, βM inhibited PGE2 production and the cytokines: TNF-α and IL-6. The COX catalyzed prostaglandin biosynthesis assay had showed selective COX-2 inhibition with a 53.0±6.01% inhibition at 20 µg/ml. Apart from this, βM was capable in repressing translocation of NF-kB into the nucleus. These results were concurrent with molecular docking which revealed COX-2 selectivity and NF-kB inhibition. The in vivo analysis showed that after four hours of peritonitis, βM was unable to reduce vascular permeability, yet could decrease the total leukocyte migration; particularly, neutrophils. Meanwhile, dexamethasone 0.5 mg/kg, successfully reduced vascular permeability. The levels of TNF-α and IL-1β in peritoneal fluid was reduced significantly by βM treatment. CONCLUSION The current study supports the traditional use of Garcinia mangostana fruit hull for treatment of inflammatory conditions. In addition, it is clear that the anti-inflammatory efficacy of this plant is not limited to the presence of α and γ, but β also with significant activity.


BioMed Research International | 2015

Thymoquinone-Loaded Nanostructured Lipid Carrier Exhibited Cytotoxicity towards Breast Cancer Cell Lines (MDA-MB-231 and MCF-7) and Cervical Cancer Cell Lines (HeLa and SiHa)

Wei Keat Ng; Latifah Saiful Yazan; Li Hua Yap; Wan Abd Ghani Wan Nor Hafiza; Chee Wun How; Rasedee Abdullah

Thymoquinone (TQ) has been shown to exhibit antitumor properties. Thymoquinone-loaded nanostructured lipid carrier (TQ-NLC) was developed to improve the bioavailability and cytotoxicity of TQ. This study was conducted to determine the cytotoxic effects of TQ-NLC on breast cancer (MDA-MB-231 and MCF-7) and cervical cancer cell lines (HeLa and SiHa). TQ-NLC was prepared by applying the hot high pressure homogenization technique. The mean particle size of TQ-NLC was 35.66 ± 0.1235 nm with a narrow polydispersity index (PDI) lower than 0.25. The zeta potential of TQ-NLC was greater than −30 mV. Polysorbate 80 helps to increase the stability of TQ-NLC. Differential scanning calorimetry showed that TQ-NLC has a melting point of 56.73°C, which is lower than that of the bulk material. The encapsulation efficiency of TQ in TQ-NLC was 97.63 ± 0.1798% as determined by HPLC analysis. TQ-NLC exhibited antiproliferative activity towards all the cell lines in a dose-dependent manner which was most cytotoxic towards MDA-MB-231 cells. Cell shrinkage was noted following treatment of MDA-MB-231 cells with TQ-NLC with an increase of apoptotic cell population (P < 0.05). TQ-NLC also induced cell cycle arrest. TQ-NLC was most cytotoxic towards MDA-MB-231 cells. It induced apoptosis and cell cycle arrest in the cells.


Nutrition and Cancer | 2013

Comparison of Tamoxifen with Edible Seaweed (Eucheuma cottonii L.) Extract in Suppressing Breast Tumor

Fatemeh T. Shamsabadi; Ali Khoddami; Samaneh Ghasemi Fard; Rasedee Abdullah; Hemn Hassan Othman; Suhaila Mohamed

The tropical edible red seaweed (Eucheuma cottonii L.) is rich in nutrients and polyphenolic compounds that may suppress cancer through its antioxidant and antiproliferative properties. The study reports on rat mammary tumor suppression and tissue antioxidant status modulation by E. cottonii ethanol extract (ECE). The effect of orally administered ECE (100 mg/kg body-weight) was compared with that of tamoxifen (10 mg/kg body-weight). Rat was induced to develop mammary tumor with subcutaneous injection of LA-7 cells (6 × 106 cells/rat). The ECE was more effective than tamoxifen in suppressing tumor growth (27%), improving tissues (plasma, liver, and kidney) malondialdehyde concentrations, superoxide dismutase activity and erythrocyte glutathione concentrations (P < 0.05). Unlike tamoxifen, the ECE displayed little toxicity to the liver and kidneys. The ECE exhibited strong anticancer effect with enzyme modulating properties, suggesting its potential as a suppressing agent for mammary gland tumor.


Cell Biology International | 2013

PAMAM dendrimer roles in gene delivery methods and stem cell research.

Nasibeh Daneshvar; Rasedee Abdullah; Fatemeh T. Shamsabadi; Chee Wun How; M. Aizat Mh; Parvaneh Mehrbod

Nanotechnology has provided new technological opportunities, which could help in challenges confronting stem cell research. Polyamidoamine (PAMAM) dendrimers, a new class of macromolecular polymers with high molecular uniformity, narrow molecular distribution specific size and shape and highly functionalised terminal surface have been extensively explored for biomedical application. PAMAM dendrimers are also nanospherical, hyperbranched and monodispersive molecules exhibiting exclusive properties which make them potential carriers for drug and gene delivery.

Collaboration


Dive into the Rasedee Abdullah's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Swee Keong Yeap

Universiti Putra Malaysia

View shared research outputs
Top Co-Authors

Avatar

Lawan Adamu

University of Maiduguri

View shared research outputs
Top Co-Authors

Avatar

Chee Wun How

Universiti Putra Malaysia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Waziri

Universiti Putra Malaysia

View shared research outputs
Top Co-Authors

Avatar

Heshu Sulaiman Rahman

Komar University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge