Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rashmi Kanagal-Shamanna is active.

Publication


Featured researches published by Rashmi Kanagal-Shamanna.


The Journal of Molecular Diagnostics | 2013

Clinical validation of a next-generation sequencing screen for mutational hotspots in 46 cancer-related genes

Rajesh Singh; Keyur P. Patel; Mark Routbort; Neelima Reddy; Bedia A. Barkoh; Brian Handal; Rashmi Kanagal-Shamanna; Wesley O. Greaves; L. Jeffrey Medeiros; Kenneth D. Aldape; Rajyalakshmi Luthra

Transfer of next-generation sequencing technology to a Clinical Laboratory Improvement Amendments-certified laboratory requires vigorous validation. Herein, we validated a next-generation sequencing screen interrogating 740 mutational hotspots in 46 cancer-related genes using the Ion Torrent AmpliSeq cancer panel and Ion Torrent Personal Genome Machine (IT-PGM). Ten nanograms of FFPE DNA was used as template to amplify mutation hotspot regions of 46 genes in 70 solid tumor samples, including 22 archival specimens with known mutations and 48 specimens sequenced in parallel with alternate sequencing platforms. In the archival specimens, the IT-PGM detected expected nucleotide substitutions (n = 29) and four of six insertions/deletions; in parallel, 66 variants were detected. These variants, except a single nucleotide substitution, were confirmed by alternate platforms. Repeated sequencing of progressively diluted DNA from two cancer cell lines with known mutations demonstrated reliable sensitivity at 10% variant frequency for single nucleotide variants with high intrarun and inter-run reproducibility. Manual library preparation yielded relatively superior sequencing performance compared with the automated Ion Torrent OneTouch system. Overall, the IT-PGM platform with the ability to multiplex and simultaneously sequence multiple patient samples using low amounts of FFPE DNA was specific and sensitive for single nucleotide variant mutation analysis and can be incorporated easily into the clinical laboratory for routine testing.


Journal of Clinical Oncology | 2014

Breast Implant–Associated Anaplastic Large-Cell Lymphoma: Long-Term Follow-Up of 60 Patients

Roberto N. Miranda; Tariq N. Aladily; H. Miles Prince; Rashmi Kanagal-Shamanna; Daphne de Jong; Luis Fayad; Mitual Amin; Nisreen Haideri; Govind Bhagat; Glen S. Brooks; David A. Shifrin; Dennis P. O'Malley; Chan Yoon Cheah; Carlos E. Bacchi; Gabriela Gualco; Shiyong Li; John Keech; Ephram P. Hochberg; Matthew J. Carty; Summer E. Hanson; Eid Mustafa; Steven Sanchez; John T. Manning; Zijun Y. Xu-Monette; Alonso R. Miranda; Patricia S. Fox; Roland L. Bassett; Jorge J. Castillo; Brady Beltran; Jan Paul de Boer

PURPOSE Breast implant-associated anaplastic large-cell lymphoma (ALCL) is a recently described clinicopathologic entity that usually presents as an effusion-associated fibrous capsule surrounding an implant. Less frequently, it presents as a mass. The natural history of this disease and long-term outcomes are unknown. PATIENTS AND METHODS We reviewed the literature for all published cases of breast implant-associated ALCL from 1997 to December 2012 and contacted corresponding authors to update clinical follow-up. RESULTS The median overall survival (OS) for 60 patients was 12 years (median follow-up, 2 years; range, 0-14 years). Capsulectomy and implant removal was performed on 56 of 60 patients (93%). Therapeutic data were available for 55 patients: 39 patients (78%) received systemic chemotherapy, and of the 16 patients (28%) who did not receive chemotherapy, 12 patients opted for watchful waiting and four patients received radiation therapy alone. Thirty-nine (93%) of 42 patients with disease confined by the fibrous capsule achieved complete remission, compared with complete remission in 13 (72%) of 18 patients with a tumor mass. Patients with a breast mass had worse OS and progression-free survival (PFS; P = .052 and P = .03, respectively). The OS or PFS were similar between patients who received and did not receive chemotherapy (P = .44 and P = .28, respectively). CONCLUSION Most patients with breast implant-associated ALCL who had disease confined within the fibrous capsule achieved complete remission. Proper management for these patients may be limited to capsulectomy and implant removal. Patients who present with a mass have a more aggressive clinical course that may be fatal, justifying cytotoxic chemotherapy in addition to removal of implants.


Modern Pathology | 2014

Next-generation sequencing-based multi-gene mutation profiling of solid tumors using fine needle aspiration samples: promises and challenges for routine clinical diagnostics

Rashmi Kanagal-Shamanna; Bryce P. Portier; Rajesh R. Singh; Mark Routbort; Kenneth D. Aldape; Brian Handal; Hamed Rahimi; Neelima Reddy; Bedia A. Barkoh; Bal Mukund Mishra; Abhaya Paladugu; Jawad Manekia; Neda Kalhor; Sinchita Roy Chowdhuri; Gregg Staerkel; L. Jeffrey Medeiros; Rajyalakshmi Luthra; Keyur P. Patel

Increasing use of fine needle aspiration for oncological diagnosis, while minimally invasive, poses a challenge for molecular testing by traditional sequencing platforms due to high sample requirements. The advent of affordable benchtop next-generation sequencing platforms such as the semiconductor-based Ion Personal Genome Machine (PGM) Sequencer has facilitated multi-gene mutational profiling using only nanograms of DNA. We describe successful next-generation sequencing-based testing of fine needle aspiration cytological specimens in a clinical laboratory setting. We selected 61 tumor specimens, obtained by fine needle aspiration, with known mutational status for clinically relevant genes; of these, 31 specimens yielded sufficient DNA for next-generation sequencing testing. Ten nanograms of DNA from each sample was tested for mutations in the hotspot regions of 46 cancer-related genes using a 318-chip on Ion PGM Sequencer. All tested samples underwent successful targeted sequencing of 46 genes. We showed 100% concordance of results between next-generation sequencing and conventional test platforms for all previously known point mutations that included BRAF, EGFR, KRAS, MET, NRAS, PIK3CA, RET and TP53, deletions of EGFR and wild-type calls. Furthermore, next-generation sequencing detected variants in 19 of the 31 (61%) patient samples that were not detected by traditional platforms, thus increasing the utility of mutation analysis; these variants involved the APC, ATM, CDKN2A, CTNNB1, FGFR2, FLT3, KDR, KIT, KRAS, MLH1, NRAS, PIK3CA, SMAD4, STK11 and TP53 genes. The results of this study show that next-generation sequencing-based mutational profiling can be performed on fine needle aspiration cytological smears and cell blocks. Next-generation sequencing can be performed with only nanograms of DNA and has better sensitivity than traditional sequencing platforms. Use of next-generation sequencing also enhances the power of fine needle aspiration by providing gene mutation results that can direct personalized cancer therapy.


Haematologica | 2014

Next-generation sequencing-based multigene mutational screening for acute myeloid leukemia using MiSeq: applicability for diagnostics and disease monitoring

Rajyalakshmi Luthra; Keyur P. Patel; Neelima Reddy; Varan Haghshenas; Mark Routbort; Michael A. Harmon; Bedia A. Barkoh; Rashmi Kanagal-Shamanna; Farhad Ravandi; Jorge Cortes; Hagop M. Kantarjian; L. Jeffrey Medeiros; Rajesh Singh

Routine molecular testing in acute myeloid leukemia involves screening several genes of therapeutic and prognostic significance for mutations. A comprehensive analysis using single-gene assays requires large amounts of DNA, is cumbersome and timely consolidation of results for clinical reporting is challenging. High throughput, next-generation sequencing platforms widely used in research have not been tested vigorously for clinical application. Here we describe the clinical application of MiSeq, a next-generation sequencing platform to screen mutational hotspots in 54 cancer-related genes including genes relevant in acute myeloid leukemia (NRAS, KRAS, FLT3, NPM1, DNMT3A, IDH1/2, JAK2, KIT and EZH2). We sequenced 63 samples from patients with acute myeloid leukemia/myelodysplastic syndrome using MiSeq and compared the results with those obtained using another next-generation sequencing platform, Ion-Torrent Personal Genome Machine and other conventional testing platforms. MiSeq detected a total of 100 single nucleotide variants and 23 NPM1 insertions that were confirmed by Ion Torrent or conventional platforms, indicating complete concordance. FLT3-internal tandem duplications (n=10) were not detected; however, re-analysis of the MiSeq output by Pindel, an indel detection algorithm, did detect them. Dilution studies of cancer cell-line DNA showed that the quantitative accuracy of mutation detection was up to an allelic frequency of 1.5% with a high level of inter- and intra-run assay reproducibility, suggesting potential utility for monitoring response to therapy, clonal heterogeneity and evolution. Examples demonstrating the advantages of MiSeq over conventional platforms for disease monitoring are provided. Easy work-flow, high throughput multiplexing capability, 4-day turnaround time and simultaneous assessment of routinely tested and emerging markers make MiSeq highly applicable for clinical molecular testing in acute myeloid leukemia.


Blood | 2014

Atypical chronic myeloid leukemia is clinically distinct from unclassifiable myelodysplastic/myeloproliferative neoplasms

Sa A. Wang; Robert P. Hasserjian; Patricia S. Fox; Heesun J. Rogers; Julia T. Geyer; Devon Chabot-Richards; Elizabeth Weinzierl; Joseph Hatem; Jesse Jaso; Rashmi Kanagal-Shamanna; Francesco C. Stingo; Keyur P. Patel; Meenakshi Mehrotra; Carlos E. Bueso-Ramos; Ken H. Young; Courtney D. DiNardo; Srdan Verstovsek; Ramon V. Tiu; Adam Bagg; Eric D. Hsi; Daniel A. Arber; Kathryn Foucar; Raja Luthra; Attilio Orazi

Atypical chronic myeloid leukemia (aCML) is a rare subtype of myelodysplastic/myeloproliferative neoplasm (MDS/MPN) largely defined morphologically. It is, unclear, however, whether aCML-associated features are distinctive enough to allow its separation from unclassifiable MDS/MPN (MDS/MPN-U). To study these 2 rare entities, 134 patient archives were collected from 7 large medical centers, of which 65 (49%) cases were further classified as aCML and the remaining 69 (51%) as MDS/MPN-U. Distinctively, aCML was associated with many adverse features and an inferior overall survival (12.4 vs 21.8 months, P = .004) and AML-free survival (11.2 vs 18.9 months, P = .003). The aCML defining features of leukocytosis and circulating myeloid precursors, but not dysgranulopoiesis, were independent negative predictors. Other factors, such as lactate dehydrogenase, circulating myeloblasts, platelets, and cytogenetics could further stratify MDS/MPN-U but not aCML patient risks. aCML appeared to have more mutated RAS (7/20 [35%] vs 4/29 [14%]) and less JAK2p.V617F (3/42 [7%] vs 10/52 [19%]), but was not statistically significant. Somatic CSF3R T618I (0/54) and CALR (0/30) mutations were not detected either in aCML or MDS/MPN-U. In conclusion, within MDS/MPN, the World Health Organization 2008 criteria for aCML identify a subgroup of patients with features clearly distinct from MDS/MPN-U. The MDS/MPN-U category is heterogeneous, and patient risk can be further stratified by a number of clinicopathological parameters.


Journal of Clinical Oncology | 2016

Complete Surgical Excision Is Essential for the Management of Patients With Breast Implant–Associated Anaplastic Large-Cell Lymphoma

Mark W. Clemens; L. Jeffrey Medeiros; Charles E. Butler; Kelly K. Hunt; Michelle A. Fanale; Steven M. Horwitz; Dennis D. Weisenburger; Jun Liu; Elizabeth A. Morgan; Rashmi Kanagal-Shamanna; Vinita Parkash; Jing Ning; Aliyah R. Sohani; Judith A. Ferry; Neha Mehta-Shah; Ahmed Dogan; Hui Liu; Nora Thormann; Arianna DiNapoli; Stephen Lade; Jorge Piccolini; Ruben Reyes; Travis Williams; Colleen M. McCarthy; Summer E. Hanson; Loretta J. Nastoupil; Rakesh Gaur; Yasuhiro Oki; Ken H. Young; Roberto N. Miranda

PURPOSE Breast implant-associated anaplastic large-cell lymphoma (BI-ALCL) is a rare type of T-cell lymphoma that arises around breast implants. The optimal management of this disease has not been established. The goal of this study is to evaluate the efficacy of different therapies used in patients with BI-ALCL to determine an optimal treatment approach. PATIENTS AND METHODS In this study, we applied strict criteria to pathologic findings, assessed therapies used, and conducted a clinical follow-up of 87 patients with BI-ALCL, including 50 previously reported in the literature and 37 unreported. A Prentice, Williams, and Peterson model was used to assess the rate of events for each therapeutic intervention. RESULTS The median and mean follow-up times were 45 and 30 months, respectively (range, 3 to 217 months). The median overall survival (OS) time after diagnosis of BI-ALCL was 13 years, and the OS rate was 93% and 89% at 3 and 5 years, respectively. Patients with lymphoma confined by the fibrous capsule surrounding the implant had better event-free survival (EFS) and OS than did patients with lymphoma that had spread beyond the capsule (P = .03). Patients who underwent a complete surgical excision that consisted of total capsulectomy with breast implant removal had better OS (P = .022) and EFS (P = .014) than did patients who received partial capsulectomy, systemic chemotherapy, or radiation therapy. CONCLUSION Surgical management with complete surgical excision is essential to achieve optimal EFS in patients with BI-ALCL.


Advances in Anatomic Pathology | 2013

MYC/BCL2 double hit high grade B-cell lymphoma

Shaoying Li; Pei Lin; Ken H. Young; Rashmi Kanagal-Shamanna; C. Cameron Yin; L. Jeffrey Medeiros

Double-hit lymphoma (DHL) has been defined by others as a B-cell lymphoma with MYC/8q24 rearrangement in combination with a translocation involving another gene, such as BCL2, BCL3, or BCL6. The most common form of DHL has translocations involving MYC and BCL2, also known as MYC/BCL2 DHL. In recent years, a number of case series of MYC/BCL2 DHL have been published. Most cases of MYC/BCL2 DHL morphologically resemble diffuse large B-cell lymphoma (DLBCL) or B-cell lymphoma, unclassifiable, with features intermediate between DLBCL and Burkitt lymphoma. These tumors are of B-cell lineage, have a germinal center B-cell immunophenotype with a high proliferation rate, and a complex karyotype. Patients with these tumors have an aggressive clinical course and poor prognosis despite high-intensity chemotherapy. More recently, studies have suggested expanding the spectrum of MYC/BCL2 DHL to include cases that have concurrent MYC and BCL2 cytogenetic abnormalities, but not necessarily translocations. In addition, overexpression of MYC and BCL2 has been shown in an appreciable subset of DLBCL tumors. These tumors show overlap with MYC/BCL2 DHL, but are not equivalent. In this review, we discuss the clinicopathologic, immunophenotypic, cytogenetic, and prognostic features of MYC/BCL2 DHL.


Cancer | 2012

Myeloid neoplasms with isolated isochromosome 17q represent a clinicopathologic entity associated with myelodysplastic/myeloproliferative features, a high risk of leukemic transformation, and wild-type TP53.

Rashmi Kanagal-Shamanna; Carlos E. Bueso-Ramos; Bedia A. Barkoh; Gary Lu; Sa Wang; Guillermo Garcia-Manero; Saroj Vadhan-Raj; Daniela Hoehn; L. Jeffrey Medeiros; C. Cameron Yin

Isolated isochromosome (17q) is a rare cytogenetic abnormality in Philadelphia chromosome‐negative myeloid neoplasms, usually myelodysplastic and/or myeloproliferative neoplasms (MDS/MPN). De novo acute myeloid leukemia (AML) with isochromosome 17q has rarely been reported. The frequency of genetic mutations is unknown.


Leukemia Research | 2015

Mutational profiling of therapy-related myelodysplastic syndromes and acute myeloid leukemia by next generation sequencing, a comparison with de novo diseases

Chi Young Ok; Keyur P. Patel; Guillermo Garcia-Manero; Mark Routbort; Bin Fu; Guilin Tang; Maitrayee Goswami; Rajesh Singh; Rashmi Kanagal-Shamanna; Sherry Pierce; Ken H. Young; Hagop M. Kantarjian; L. Jeffrey Medeiros; Rajyalakshmi Luthra; Sa A. Wang

In this study we used a next generation sequencing-based approach to profile gene mutations in therapy-related myelodysplastic syndromes (t-MDS) and acute myeloid leukemia (t-AML); and compared these findings with de novo MDS/AML. Consecutive bone marrow samples of 498 patients, including 70 therapy-related (28 MDS and 42 AML) and 428 de novo (147 MDS and 281 AML) were analyzed using a modified-TruSeq Amplicon Cancer Panel (Illumina) covering mutation hotspots of 53 genes. Overall, mutation(s) were detected in 58.6% of t-MDS/AML and 56.8% of de novo MDS/AML. Of therapy-related cases, mutations were detected in 71.4% of t-AML versus 39.3% t-MDS (p=0.0127). TP53 was the most common mutated gene in t-MDS (35.7%) as well as t-AML (33.3%), significantly higher than de novo MDS (17.7%) (p=0.0410) and de novo AML (12.8%) (p=0.0020). t-AML showed more frequent PTPN11 but less NPM1 and FLT3 mutations than de novo AML. In summary, t-MDS/AML shows a mutation profile different from their de novo counterparts. TP53 mutations are highly and similarly prevalent in t-MDS and t-AML but mutations in genes other than TP53 were more frequent in t-AML than t-MDS. The molecular genetic profiling further expands our understanding in this group of clinically aggressive yet heterogeneous myeloid neoplasms.


American Journal of Clinical Pathology | 2014

Differential Expression of CD200 in B-Cell Neoplasms by Flow Cytometry Can Assist in Diagnosis, Subclassification, and Bone Marrow Staging

Pramoda Challagundla; L. Jeffrey Medeiros; Rashmi Kanagal-Shamanna; Roberto N. Miranda; Jeffrey L. Jorgensen

OBJECTIVES To analyze CD200 expression by flow cytometry in a large series of B-cell neoplasms in a variety of tissue types in comparison with benign B-lineage cells. METHODS We measured CD200 expression levels in 505 peripheral blood (PB), bone marrow (BM), and lymphoid tissue biopsy specimens, including 364 cases positive for B-cell leukemias and lymphomas. RESULTS CD200 expression in chronic lymphocytic leukemia cases was as bright as or brighter than normal PB B cells in nearly all cases, while mantle cell lymphoma (MCL) cases were usually dim or negative. However, rare MCL cases (about 5%) were moderately bright for CD200. Marginal zone lymphomas varied by subtype, with nodal cases brighter, splenic cases dimmer, and extranodal cases heterogeneous for CD200 expression. Follicular lymphoma (FL) cells were brighter for CD200 in BM specimens than in lymph nodes. In some BM specimens, dim CD200 could distinguish FL cells from background hematogones. Large B-cell lymphomas of the non-germinal center type tended to be brighter for CD200 than those of the germinal center type, while Burkitt lymphomas were negative. CONCLUSIONS CD200 staining by flow cytometry can be useful in the differential diagnosis of B-cell neoplasms and in their detection in the BM.

Collaboration


Dive into the Rashmi Kanagal-Shamanna's collaboration.

Top Co-Authors

Avatar

L. Jeffrey Medeiros

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Keyur P. Patel

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Carlos E. Bueso-Ramos

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Rajyalakshmi Luthra

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Hagop M. Kantarjian

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Mark Routbort

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Elias Jabbour

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Guillermo Garcia-Manero

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Preetesh Jain

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Farhad Ravandi

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge