Rashmi Madhuri
Banaras Hindu University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rashmi Madhuri.
Analytica Chimica Acta | 2010
Bhim Bali Prasad; Mahavir Prasad Tiwari; Rashmi Madhuri; Piyush Sindhu Sharma
A simple polymerization strategy is reported in this work which allows molecularly imprinted polymeric fiber (monolith) fabrication for direct use in sensing devices. This is advantageous for achieving higher degree of enrichment of target analyte (folic acid) from the complex matrices of real samples, without any surface fouling, cross-reactivity, and non-specific (false-positive) contributions. In order to measure serum folic acid at ultratrace level to detect spina bifida, a neural tube defect in mother, and other acute cases of proteomic diseases, the hyphenation between molecularly imprinted micro-solid phase extraction fiber and a complementary molecularly imprinted polymer-carbon composite fiber sensor has been found quite efficient. The primitive diagnosis of many chronic diseases is feasible by estimating folic acid as biomarker, with the detection limit as low as 0.0036 ng mL(-1) (relative standard deviation=0.13%, signal/noise=3) in human blood serum.
Biosensors and Bioelectronics | 2010
Bhim Bali Prasad; Rashmi Madhuri; Mahavir Prasad Tiwari; Piyush Sindhu Sharma
Molecularly imprinted polymers (MIPs) are often electrically insulating materials. Due to the presence of diffusion barrier(s) in between such MIP coating and electrode surface and the absence of a direct path for the conduction of electrons from the binding sites to the electrode, the development of electrochemical sensor is significantly restricted. The direct use of MIPs those possess intrinsic electron-transport properties, is highly limited. These problems are resolved by the design of an original, substrate-selective MIP-fiber sensor that combines conventional insulating MIP and conducting carbon powder in consolidated phase. A layer of conducting carbon particles, arranged orderly as carbon strip, is inducted in the polymer for direct electronic conduction. MIP-carbon composite (monolithic fiber) in this work is prepared via in situ free radical polymerization of a new monomer (2,4,6-trisacrylamido-1,3,5-triazine, TAT) and subsequent cross-linkage with ethylene glycol dimethacrylate, in the presence of carbon powder and template (folic acid), at 55 degrees C in a glass capillary. The detection of folic acid with the MIP-fiber sensor was found to be specific and quantitative (detection limit 0.20 ng mL(-1), RSD=1.3%, S/N=3), in aqueous, blood serum and pharmaceutical samples, without any problem of non-specific false-positive contribution and cross-reactivity.
Journal of Chromatography A | 2010
Bhim Bali Prasad; Mahavir Prasad Tiwari; Rashmi Madhuri; Piyush Sindhu Sharma
Thyroxine is a known disease biomarker which demands a highly sensitive and selective technique to measure ultratrace level with enantiodifferentiation of its optical isomers (d- and l-), in real samples. In this work, an approach of hyphenation between molecularly imprinted micro-solid phase extraction and a complementary molecularly imprinted polymer-sensor was adopted for enantioseparation, preconcentration, and analysis of d- and l-thyroxine. In both techniques, the same imprinted polymer, coated on a vinyl functionalized self-assembled monolayer modified silver wire, was used as the respective extraction fiber as well as sensor material. This combination enabled enhanced preconcentration of test analyte substantially so as to achieve the stringent limit [limit of detection: 0.0084 ng mL(-1), RSD=0.81%, S/N=3 (d-thyroxine); 0.0087 ng mL(-1), RSD=0.63%, S/N=3 (l-thyroxine)] of clinical detection of thyroid-related diseases, without any problems of non-specific false-positive contribution and cross-reactivity.
Biosensors and Bioelectronics | 2011
Bhim Bali Prasad; Deepak Kumar; Rashmi Madhuri; Mahavir Prasad Tiwari
Enantioselective trace level sensing of l-histidine (limit of detection, 1.980 ngm L(-1), S/N=3) was feasible with the use of a typical, reproducible, and rugged complex imprinted polymer-based pencil graphite electrode, in aqueous samples. In the present instance, the Cu(2+) ion-mediated imprinting of l-histidine in an molecularly imprinted polymer motif actually helped upbringing electrocatalytic activity to respond an enhanced differential pulse anodic stripping voltammetric oxidation peak of l-histidine, without any cross-reactivity and false-positive, in real samples. The proposed sensor could be considered suitable for the practical applications in biomarking histedinemia, a disease associated with L-histidine metabolic disorders, in clinical settings.
Talanta | 2010
Bhim Bali Prasad; Rashmi Madhuri; Mahavir Prasad Tiwari; Piyush Sindhu Sharma
Electrochemical sensors demonstrating enantioselectivity to tryptophan enantiomers, with high selectivity and sensitivity, were fabricated by the use of a monolithic fiber of molecularly imprinted polymer-carbon composite. The recognition mechanism and performance of these sensors were evaluated by differential pulse anodic stripping voltammetry. The sensor imprinted for l-tryptophan not only discriminated the target from its analogues and other amino acids but also responded specifically in racemic mixture in aqueous, biological, and pharmaceutical samples. The binding kinetics of L-tryptophan was also established with the help of anodic stripping cyclic voltammetry and chronocoulometry. The detection limit for L-tryptophan was as low as 0.24 ng mL(-1) (signal/noise=3) which is appropriate for biomarking diseases, caused by an acute tryptophan-depletion, in clinical setting.
Biosensors and Bioelectronics | 2013
Bhim Bali Prasad; Amrita Prasad; Mahavir Prasad Tiwari; Rashmi Madhuri
Carbon-nanotubes play a pivotal role in molecularly imprinted polymer technology for inculcating conducting property, high surface to volume ratio, and maximum porosity in the film texture. Contrary to the non-covalent heterogeneous dispersion of pure (unmodified) multiwalled carbon nanotubes in the imprinted polymer film, the homogeneous distribution of their functionalized derivative was found more effective to augment the sensitivity of the measurement. This could be made feasible using multiwalled carbon nanotubes bearing terminal monomeric unit (termed as CNT-mer) for the polymerization (one CNT-mer in each repeating unit). In this work, the CNT-mer entails a N-hydroxyphenyl maleimide functionality to be utilized in the chain propagation with simultaneous imprinting of epinephrine in the polymeric network. This system, when casted on the tip of a pencil graphite electrode, responded a highly sensitive and selective response for epinephrine, prevalent in aqueous and real samples at ultratrace level (linear range 0.09-5.90 ng mL(-1), limit of detection 0.02 ng mL(-1), S/N=3), without any cross-reactivity and matrix effects. The proposed sensor is advantageous in obtaining enhanced differential pulse anodic stripping voltammetric current vis-a-vis the corresponding imprinted sensor modified with randomly dispersed flocculated multiwalled carbon nanotubes bundles. While the latter might restrict the interlayer diffusion of analyte in the film, the former sensor facilitated high diffusivity with the channelized electron transport to respond higher current. The CNT-mer dispersed sensor was found to be stable and rugged against mechanical stress and can be used, after regeneration, for more than hundred consecutive experiments in clinical settings.
Analytica Chimica Acta | 2010
Bhim Bali Prasad; Rashmi Madhuri; Mahavir Prasad Tiwari; Piyush Sindhu Sharma
The present work describes a new, simple, and easy method for the generation of stable molecularly imprinted sites in polymeric film, combining self-assembled monolayer and Layer-by-layer approaches through thermal cross-linking of the layered structures, onto the surface of silver electrode. Modified silver electrodes demonstrate enantiodifferentiation and sensitive (detection limits 0.0060 ng mL(-1) for L- and 0.0062 for D-thyroxine) determination of d- and l-thyroxine with the help of differential pulse anodic stripping voltammetric technique. The binding kinetics of thyroxine was explored using anodic stripping cyclic voltammetry and chronocoulometry. The sensor was also validated for D- and L-thyroxine determinations in biological and pharmaceutical samples.
Journal of Chromatography B | 2011
Bhim Bali Prasad; Mahavir Prasad Tiwari; Rashmi Madhuri; Piyush Sindhu Sharma
Highly efficient enantioselective separation and quantitative recoveries of D- and L-tryptophan in aqueous and real samples can be achieved, with a monolithic molecularly imprinted polymeric fiber that serves both for micro-solid phase extraction and ultratrace sensing, without any false-positive (non-specific) contribution and cross-reactivity, in the range of 0.15-30.00 ng mL(-1) with detection limit as low as 0.0261 ng mL(-1) (relative standard deviation=0.64%, signal/noise=3). The proposed method combining molecularly imprinted micro-solid phase extraction fiber and a complementary molecularly imprinted polymer-carbon composite fiber sensor is proven to be useful for clinical diagnosis of stress-related diseases caused by acute tryptophan depletion.
Sensors and Actuators B-chemical | 2010
Bhim Bali Prasad; Rashmi Madhuri; Mahavir Prasad Tiwari; Piyush Sindhu Sharma
Electrochimica Acta | 2010
Bhim Bali Prasad; Rashmi Madhuri; Mahavir Prasad Tiwari; Piyush Sindhu Sharma