Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rasim Ozgur Rosti is active.

Publication


Featured researches published by Rasim Ozgur Rosti.


Science | 2014

Exome Sequencing Links Corticospinal Motor Neuron Disease to Common Neurodegenerative Disorders

Gaia Novarino; Ali G. Fenstermaker; Maha S. Zaki; Matan Hofree; Jennifer L. Silhavy; Andrew Heiberg; Mostafa Abdellateef; Basak Rosti; Eric Scott; Lobna Mansour; Amira Masri; Hülya Kayserili; Jumana Y. Al-Aama; Ghada M.H. Abdel-Salam; Ariana Karminejad; Majdi Kara; Bülent Kara; Bita Bozorgmehri; Tawfeg Ben-Omran; Faezeh Mojahedi; Iman Gamal El Din Mahmoud; Naima Bouslam; Ahmed Bouhouche; Ali Benomar; Sylvain Hanein; Laure Raymond; Sylvie Forlani; Massimo Mascaro; Laila Selim; Nabil Shehata

Neurodegenerative Genetics The underlying genetics of neurodegenerative disorders tend not to be well understood. Novarino et al. (p. 506; see the Perspective by Singleton) investigated the underlying genetics of hereditary spastic paraplegia (HSP), a human neurodegenerative disease, by sequencing the exomes of individuals with recessive neurological disorders. Loss-of-function gene mutations in both novel genes and genes previously implicated for this condition were identified, and several were functionally validated. Analysis of hereditary spastic paraplegia genes identifies mutants involved in human neurodegenerative disease. [Also see Perspective by Singleton] Hereditary spastic paraplegias (HSPs) are neurodegenerative motor neuron diseases characterized by progressive age-dependent loss of corticospinal motor tract function. Although the genetic basis is partly understood, only a fraction of cases can receive a genetic diagnosis, and a global view of HSP is lacking. By using whole-exome sequencing in combination with network analysis, we identified 18 previously unknown putative HSP genes and validated nearly all of these genes functionally or genetically. The pathways highlighted by these mutations link HSP to cellular transport, nucleotide metabolism, and synapse and axon development. Network analysis revealed a host of further candidate genes, of which three were mutated in our cohort. Our analysis links HSP to other neurodegenerative disorders and can facilitate gene discovery and mechanistic understanding of disease.


Cell | 2014

CLP1 founder mutation links tRNA splicing and maturation to cerebellar development and neurodegeneration.

Ashleigh E. Schaffer; Veerle Rc Eggens; Ahmet Okay Caglayan; Miriam S. Reuter; Eric Scott; Nicole G. Coufal; Jennifer L. Silhavy; Yuanchao Xue; Hülya Kayserili; Katsuhito Yasuno; Rasim Ozgur Rosti; Mostafa Abdellateef; Caner Caglar; Paul R. Kasher; J. Leonie Cazemier; Marian A. J. Weterman; Vincent Cantagrel; Na Cai; Christiane Zweier; Umut Altunoglu; N. Bilge Satkin; Fesih Aktar; Beyhan Tüysüz; Cengiz Yalcinkaya; Hüseyin Çaksen; Kaya Bilguvar; Xiang-Dong Fu; Christopher R. Trotta; Stacey Gabriel; André Reis

Neurodegenerative diseases can occur so early as to affect neurodevelopment. From a cohort of more than 2,000 consanguineous families with childhood neurological disease, we identified a founder mutation in four independent pedigrees in cleavage and polyadenylation factor I subunit 1 (CLP1). CLP1 is a multifunctional kinase implicated in tRNA, mRNA, and siRNA maturation. Kinase activity of the CLP1 mutant protein was defective, and the tRNA endonuclease complex (TSEN) was destabilized, resulting in impaired pre-tRNA cleavage. Germline clp1 null zebrafish showed cerebellar neurodegeneration that was rescued by wild-type, but not mutant, human CLP1 expression. Patient-derived induced neurons displayed both depletion of mature tRNAs and accumulation of unspliced pre-tRNAs. Transfection of partially processed tRNA fragments into patient cells exacerbated an oxidative stress-induced reduction in cell survival. Our data link tRNA maturation to neuronal development and neurodegeneration through defective CLP1 function in humans.


Nature Reviews Neurology | 2014

Primary cilia in neurodevelopmental disorders

Enza Maria Valente; Rasim Ozgur Rosti; Elizabeth M. Gibbs; Joseph G. Gleeson

Primary cilia are generally solitary organelles that emanate from the surface of almost all vertebrate cell types. Until recently, details regarding the function of these structures were lacking; however, extensive evidence now suggests that primary cilia have critical roles in sensing the extracellular environment, and in coordinating developmental and homeostatic signalling pathways. Furthermore, disruption of these functions seems to underlie a diverse spectrum of disorders, known as primary ciliopathies. These disorders are characterized by wide-ranging clinical and genetic heterogeneity, but with substantial overlap among distinct conditions. Indeed, ciliopathies are associated with a large variety of manifestations that often include distinctive neurological findings. Herein, we review neurological features associated with primary ciliopathies, highlight genotype–phenotype correlations, and discuss potential mechanisms underlying these findings.


Nature Genetics | 2015

Inactivating mutations in MFSD2A , required for omega-3 fatty acid transport in brain, cause a lethal microcephaly syndrome

Alicia Guemez-Gamboa; Long N. Nguyen; Hongbo Yang; Maha S. Zaki; Majdi Kara; Tawfeg Ben-Omran; Naiara Akizu; Rasim Ozgur Rosti; Basak Rosti; Eric Scott; Jana Schroth; Brett Copeland; Keith K. Vaux; Amaury Cazenave-Gassiot; Debra Q.Y. Quek; Bernice H. Wong; Bryan C. Tan; Markus R. Wenk; Murat Gunel; Stacey Gabriel; Neil C. Chi; David L. Silver; Joseph G. Gleeson

Docosahexanoic acid (DHA) is the most abundant omega-3 fatty acid in brain, and, although it is considered essential, deficiency has not been linked to disease. Despite the large mass of DHA in phospholipids, the brain does not synthesize it. DHA is imported across the blood-brain barrier (BBB) through the major facilitator superfamily domain–containing 2a (MFSD2A) protein. MFSD2A transports DHA as well as other fatty acids in the form of lysophosphatidylcholine (LPC). We identify two families displaying MFSD2A mutations in conserved residues. Affected individuals exhibited a lethal microcephaly syndrome linked to inadequate uptake of LPC lipids. The MFSD2A mutations impaired transport activity in a cell-based assay. Moreover, when expressed in mfsd2aa-morphant zebrafish, mutants failed to rescue microcephaly, BBB breakdown and lethality. Our results establish a link between transport of DHA and LPCs by MFSD2A and human brain growth and function, presenting the first evidence of monogenic disease related to transport of DHA in humans.


eLife | 2015

Functional genome-wide siRNA screen identifies KIAA0586 as mutated in Joubert syndrome.

Susanne Roosing; Matan Hofree; Sehyun Kim; Eric Scott; Brett Copeland; Marta Romani; Jennifer L Silhavy; Rasim Ozgur Rosti; Jana Schroth; Tommaso Mazza; Elide Miccinilli; Maha S. Zaki; Kathryn J. Swoboda; Joanne Milisa-Drautz; William B. Dobyns; Mohamed Mikati; Faruk Incecik; Matloob Azam; Renato Borgatti; Romina Romaniello; Rose-Mary Boustany; Carol L. Clericuzio; Stefano D'Arrigo; Petter Strømme; Eugen Boltshauser; Franco Stanzial; Marisol Mirabelli-Badenier; Isabella Moroni; Enrico Bertini; Francesco Emma

Defective primary ciliogenesis or cilium stability forms the basis of human ciliopathies, including Joubert syndrome (JS), with defective cerebellar vermis development. We performed a high-content genome-wide small interfering RNA (siRNA) screen to identify genes regulating ciliogenesis as candidates for JS. We analyzed results with a supervised-learning approach, using SYSCILIA gold standard, Cildb3.0, a centriole siRNA screen and the GTex project, identifying 591 likely candidates. Intersection of this data with whole exome results from 145 individuals with unexplained JS identified six families with predominantly compound heterozygous mutations in KIAA0586. A c.428del base deletion in 0.1% of the general population was found in trans with a second mutation in an additional set of 9 of 163 unexplained JS patients. KIAA0586 is an orthologue of chick Talpid3, required for ciliogenesis and Sonic hedgehog signaling. Our results uncover a relatively high frequency cause for JS and contribute a list of candidates for future gene discoveries in ciliopathies. DOI: http://dx.doi.org/10.7554/eLife.06602.001


Nature Genetics | 2015

Biallelic mutations in SNX14 cause a syndromic form of cerebellar atrophy and lysosome-autophagosome dysfunction

Naiara Akizu; Cantagrel; Maha S. Zaki; Lihadh Al-Gazali; Wang X; Rasim Ozgur Rosti; Esra Dikoglu; Gelot Ab; Basak Rosti; Keith K. Vaux; Eric Scott; Jennifer L Silhavy; Jana Schroth; Brett Copeland; Ashleigh E. Schaffer; Gordts Pl; Esko Jd; Buschman; Seth J. Field; Napolitano G; Ghada M. H. Abdel-Salam; Ozgul Rk; Sagıroglu Ms; Matloob Azam; Samira Ismail; Mona Aglan; Laila Selim; Iman G. Mahmoud; Sawsan Abdel-Hadi; Badawy Ae

Pediatric-onset ataxias often present clinically as developmental delay and intellectual disability, with prominent cerebellar atrophy as a key neuroradiographic finding. Here we describe a new clinically distinguishable recessive syndrome in 12 families with cerebellar atrophy together with ataxia, coarsened facial features and intellectual disability, due to truncating mutations in the sorting nexin gene SNX14, encoding a ubiquitously expressed modular PX domain–containing sorting factor. We found SNX14 localized to lysosomes and associated with phosphatidylinositol (3,5)-bisphosphate, a key component of late endosomes/lysosomes. Patient-derived cells showed engorged lysosomes and a slower autophagosome clearance rate upon autophagy induction by starvation. Zebrafish morphants for snx14 showed dramatic loss of cerebellar parenchyma, accumulation of autophagosomes and activation of apoptosis. Our results characterize a unique ataxia syndrome due to biallelic SNX14 mutations leading to lysosome-autophagosome dysfunction.


Developmental Medicine & Child Neurology | 2014

The genetic landscape of autism spectrum disorders

Rasim Ozgur Rosti; Abdelrahim Abdrabou Sadek; Keith K. Vaux; Joseph G. Gleeson

Autism spectrum disorders (ASDs) are a group of heterogeneous neurodevelopmental disorders that show impaired communication and socialization, restricted interests, and stereotypical behavioral patterns. Recent advances in molecular medicine and high throughput screenings, such as array comparative genomic hybridization (CGH) and exome and whole genome sequencing, have revealed both novel insights and new questions about the nature of this spectrum of disorders. What has emerged is a better understanding about the genetic architecture of various genetic subtypes of ASD and correlations of genetic mutations with specific autism subtypes. Based on this new information, we outline a strategy for advancing diagnosis, prognosis, and counseling for patients and families.


Neuron | 2014

Mutations in KATNB1 Cause Complex Cerebral Malformations by Disrupting Asymmetrically Dividing Neural Progenitors

Ahmet Okay Caglayan; Ashleigh E. Schaffer; Chiswili Chabu; Octavian Henegariu; Fernando Vonhoff; Gozde Tugce Akgumus; Sayoko Nishimura; Wenqi Han; Shu Tu; Burçin Baran; Hakan Gumus; Cengiz Dilber; Maha S. Zaki; Heba A.A. Hossni; Jean-Baptiste Rivière; Hülya Kayserili; Emily Spencer; Rasim Ozgur Rosti; Jana Schroth; Hüseyin Per; Caner Caglar; Çağri Çağlar; Duygu Dölen; Jacob F. Baranoski; Frank J. Minja; E. Zeynep Erson-Omay; Shrikant Mane; Richard P. Lifton; Tian Xu; Haig Keshishian

Exome sequencing analysis of over 2,000 children with complex malformations of cortical development identified five independent (four homozygous and one compound heterozygous) deleterious mutations in KATNB1, encoding the regulatory subunit of the microtubule-severing enzyme Katanin. Mitotic spindle formation is defective in patient-derived fibroblasts, a consequence of disrupted interactions of mutant KATNB1 with KATNA1, the catalytic subunit of Katanin, and other microtubule-associated proteins. Loss of KATNB1 orthologs in zebrafish (katnb1) and flies (kat80) results in microcephaly, recapitulating the human phenotype. In the developing Drosophila optic lobe, kat80 loss specifically affects the asymmetrically dividing neuroblasts, which display supernumerary centrosomes and spindle abnormalities during mitosis, leading to cell cycle progression delays and reduced cell numbers. Furthermore, kat80 depletion results in dendritic arborization defects in sensory and motor neurons, affecting neural architecture. Taken together, we provide insight into the mechanisms by which KATNB1 mutations cause human cerebral cortical malformations, demonstrating its fundamental role during brain development.


American Journal of Human Genetics | 2016

Biallelic Mutations in Citron Kinase Link Mitotic Cytokinesis to Human Primary Microcephaly

Hongda Li; Maha S. Zaki; Samira Ismail; Dorit Farfara; Kyongmi Um; Rasim Ozgur Rosti; Eric Scott; Shu Tu; Neil C. Chi; Stacey Gabriel; Emine Z. Erson-Omay; A. Gulhan Ercan-Sencicek; Katsuhito Yasuno; Ahmet Okay Çağlayan; Hande Kaymakçalan; Barış Ekici; Kaya Bilguvar; Murat Gunel; Joseph G. Gleeson

Cell division terminates with cytokinesis and cellular separation. Autosomal-recessive primary microcephaly (MCPH) is a neurodevelopmental disorder characterized by a reduction in brain and head size at birth in addition to non-progressive intellectual disability. MCPH is genetically heterogeneous, and 16 loci are known to be associated with loss-of-function mutations predominantly affecting centrosomal-associated proteins, but the multiple roles of centrosomes in cellular function has left questions about etiology. Here, we identified three families affected by homozygous missense mutations in CIT, encoding citron rho-interacting kinase (CIT), which has established roles in cytokinesis. All mutations caused substitution of conserved amino acid residues in the kinase domain and impaired kinase activity. Neural progenitors that were differentiated from induced pluripotent stem cells (iPSCs) derived from individuals with these mutations exhibited abnormal cytokinesis with delayed mitosis, multipolar spindles, and increased apoptosis, rescued by CRISPR/Cas9 genome editing. Our results highlight the importance of cytokinesis in the pathology of primary microcephaly.


Journal of Medical Genetics | 2016

Mutations in CEP120 cause Joubert syndrome as well as complex ciliopathy phenotypes

Susanne Roosing; Marta Romani; Mala Isrie; Rasim Ozgur Rosti; Alessia Micalizzi; Damir Musaev; Tommaso Mazza; Lihadh Al-Gazali; Umut Altunoglu; Eugen Boltshauser; Stefano D'Arrigo; Bart De Keersmaecker; Hülya Kayserili; Sarah Brandenberger; I. Kraoua; Paul R. Mark; Trudy McKanna; Joachim Van Keirsbilck; Philippe Moerman; Andrea Poretti; Ratna Puri; Hilde Van Esch; Joseph G. Gleeson; Enza Maria Valente

Background Ciliopathies are an extensive group of autosomal recessive or X-linked disorders with considerable genetic and clinical overlap, which collectively share multiple organ involvement and may result in lethal or viable phenotypes. In large numbers of cases the genetic defect remains yet to be determined. The aim of this study is to describe the mutational frequency and phenotypic spectrum of the CEP120 gene. Methods Exome sequencing was performed in 145 patients with Joubert syndrome (JS), including 15 children with oral-facial-digital syndrome type VI (OFDVI) and 21 Meckel syndrome (MKS) fetuses. Moreover, exome sequencing was performed in one fetus with tectocerebellar dysraphia with occipital encephalocele (TCDOE), molar tooth sign and additional skeletal abnormalities. As a parallel study, 346 probands with a phenotype consistent with JS or related ciliopathies underwent next-generation sequencing-based targeted sequencing of 120 previously described and candidate ciliopathy genes. Results We present six probands carrying nine distinct mutations (of which eight are novel) in the CEP120 gene, previously found mutated only in Jeune asphyxiating thoracic dystrophy (JATD). The CEP120-associated phenotype ranges from mild classical JS in four patients to more severe conditions in two fetuses, with overlapping features of distinct ciliopathies that include TCDOE, MKS, JATD and OFD syndromes. No obvious correlation is evident between the type or location of identified mutations and the ciliopathy phenotype. Conclusion Our findings broaden the spectrum of phenotypes caused by CEP120 mutations that account for nearly 1% of patients with JS as well as for more complex ciliopathy phenotypes. The lack of clear genotype–phenotype correlation highlights the relevance of comprehensive genetic analyses in the diagnostics of ciliopathies.

Collaboration


Dive into the Rasim Ozgur Rosti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maha S. Zaki

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric Scott

California State University

View shared research outputs
Top Co-Authors

Avatar

Damir Musaev

University of California

View shared research outputs
Top Co-Authors

Avatar

Basak Rosti

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Jana Schroth

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Naiara Akizu

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge