Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rasmus Heller is active.

Publication


Featured researches published by Rasmus Heller.


PLOS ONE | 2013

The Confounding Effect of Population Structure on Bayesian Skyline Plot Inferences of Demographic History

Rasmus Heller; Lounès Chikhi; Hans R. Siegismund

Many coalescent-based methods aiming to infer the demographic history of populations assume a single, isolated and panmictic population (i.e. a Wright-Fisher model). While this assumption may be reasonable under many conditions, several recent studies have shown that the results can be misleading when it is violated. Among the most widely applied demographic inference methods are Bayesian skyline plots (BSPs), which are used across a range of biological fields. Violations of the panmixia assumption are to be expected in many biological systems, but the consequences for skyline plot inferences have so far not been addressed and quantified. We simulated DNA sequence data under a variety of scenarios involving structured populations with variable levels of gene flow and analysed them using BSPs as implemented in the software package BEAST. Results revealed that BSPs can show false signals of population decline under biologically plausible combinations of population structure and sampling strategy, suggesting that the interpretation of several previous studies may need to be re-evaluated. We found that a balanced sampling strategy whereby samples are distributed on several populations provides the best scheme for inferring demographic change over a typical time scale. Analyses of data from a structured African buffalo population demonstrate how BSP results can be strengthened by simulations. We recommend that sample selection should be carefully considered in relation to population structure previous to BSP analyses, and that alternative scenarios should be evaluated when interpreting signals of population size change.


Molecular Ecology | 2012

Comparative phylogeography of African savannah ungulates

Eline D. Lorenzen; Rasmus Heller; Hans R. Siegismund

The savannah biome of sub‐Saharan Africa harbours the highest diversity of ungulates (hoofed mammals) on Earth. In this review, we compile population genetic data from 19 codistributed ungulate taxa of the savannah biome and find striking concordance in the phylogeographic structuring of species. Data from across taxa reveal distinct regional lineages, which reflect the survival and divergence of populations in isolated savannah refugia during the climatic oscillations of the Pleistocene. Data from taxa across trophic levels suggest distinct savannah refugia were present in West, East, Southern and South‐West Africa. Furthermore, differing Pleistocene evolutionary biogeographic scenarios are proposed for East and Southern Africa, supported by palaeoclimatic data and the fossil record. Environmental instability in East Africa facilitated several spatial and temporal refugia and is reflected in the high inter‐ and intraspecific diversity of the region. In contrast, phylogeographic data suggest a stable, long‐standing savannah refuge in the south.


Molecular Ecology | 2008

Mid-Holocene decline in African buffalos inferred from Bayesian coalescent-based analyses of microsatellites and mitochondrial DNA

Rasmus Heller; Eline D. Lorenzen; J. B. A. Okello; Charles Masembe; Hans R. Siegismund

Genetic studies concerned with the demographic history of wildlife species can help elucidate the role of climate change and other forces such as human activity in shaping patterns of divergence and distribution. The African buffalo (Syncerus caffer) declined dramatically during the rinderpest pandemic in the late 1800s, but little is known about the earlier demographic history of the species. We analysed genetic variation at 17 microsatellite loci and a 302‐bp fragment of the mitochondrial DNA control region to infer past demographic changes in buffalo populations from East Africa. Two Bayesian coalescent‐based methods as well as traditional bottleneck tests were applied to infer detailed dynamics in buffalo demographic history. No clear genetic signature of population declines related to the rinderpest pandemic could be detected. However, Bayesian coalescent modelling detected a strong signal of African buffalo population declines in the order of 75–98%, starting in the mid‐Holocene (approximately 3–7000 years ago). The signature of decline was remarkably consistent using two different coalescent‐based methods and two types of molecular markers. Exploratory analyses involving various prior assumptions did not seriously affect the magnitude or timing of the inferred population decline. Climate data show that tropical Africa experienced a pronounced transition to a drier climate approximately 4500 years ago, concurrent with the buffalo decline. We therefore propose that the mid‐Holocene aridification of East Africa caused a major decline in the effective population size of the buffalo, a species reliant on moist savannah habitat for its existence.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Extinct New Zealand megafauna were not in decline before human colonization

Morten E. Allentoft; Rasmus Heller; Charlotte L. Oskam; Eline D. Lorenzen; Marie L. Hale; M.T.P. Gilbert; C. Jacomb; Richard N. Holdaway; Michael Bunce

Significance In New Zealand, nine species of moa (large, wingless ratite birds) went extinct shortly after Polynesian settlement. In this study, we characterize the gene pools of four moa species during the final 4,000 y of their existence and gain new insights into moa biology and their population sizes. Our analyses show that moa populations were large and viable prior to human arrival in New Zealand, and their demise therefore represents a striking example of human overexploitation of megafauna. The extinction of New Zealands moa (Aves: Dinornithiformes) followed the arrival of humans in the late 13th century and was the final event of the prehistoric Late Quaternary megafauna extinctions. Determining the state of the moa populations in the pre-extinction period is fundamental to understanding the causes of the event. We sampled 281 moa individuals and combined radiocarbon dating with ancient DNA analyses to help resolve the extinction debate and gain insights into moa biology. The samples, which were predominantly from the last 4,000 years preceding the extinction, represent four sympatric moa species excavated from five adjacent fossil deposits. We characterized the moa assemblage using mitochondrial DNA and nuclear microsatellite markers developed specifically for moa. Although genetic diversity differed significantly among the four species, we found that the millennia preceding the extinction were characterized by a remarkable degree of genetic stability in all species, with no loss of heterozygosity and no shifts in allele frequencies over time. The extinction event itself was too rapid to be manifested in the moa gene pools. Contradicting previous claims of a decline in moa before Polynesian settlement in New Zealand, our findings indicate that the populations were large and stable before suddenly disappearing. This interpretation is supported by approximate Bayesian computation analyses. Our analyses consolidate the disappearance of moa as the most rapid, human-facilitated megafauna extinction documented to date.


Systematic Biology | 2013

Are there really twice as many bovid species as we thought

Rasmus Heller; Peter Frandsen; Eline D. Lorenzen; Hans R. Siegismund

Correspondence to be sent to: Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark;E-mail: [email protected], [email protected]. Heller and P. Frandsen contributed equally to this article.Received 3 December 2012; reviews returned 7 January 2013; accepted 18 January 2013Associate Editor: Frank (Andy) Anderson


Infection, Genetics and Evolution | 2010

Diversity and transboundary mobility of serotype O foot-and-mouth disease virus in East Africa: Implications for vaccination policies

S. N. Balinda; Abraham K. Sangula; Rasmus Heller; Vincent B. Muwanika; Graham J. Belsham; Charles Masembe; Hans R. Siegismund

Foot-and-mouth disease (FMD) virus serotype O has been responsible for most reported outbreaks of the disease in East Africa. A sustained campaign for the past 40 years to control FMD mainly by vaccination, combined with quarantine and zoosanitary measures has been undertaken with limited success. We investigated the genetic relationships among serotype O strains in eastern Africa using complete VP1 coding region sequences obtained from 46 FMD virus isolates collected in Kenya in the years 1964-2008 and 8 Ugandan isolates collected between 1999 and 2006. In addition, 21 selected FMDV sequences from Genbank representing reference strains from eastern Africa and elsewhere were included in the Bayesian inference analyses and the detection of selection forces. The results confirmed previous observations that eastern Africa harbours four distinct topotypes (clades with >15% sequence divergence). All but one strain isolated post-2000 belonged to topotypes EA-2, EA-3 and EA-4, while all three vaccines have been based on strains in the EA-1 topotype. The estimated dN/dS ratios across the individual codons of the entire VP1 coding region revealed that purifying (negative) selection constituted the dominant evolutionary force. Cross-border disease transmission within the region has been suggested with probable incursions of topotypes EA-3 and EA-4 into Kenya and Uganda from neighboring Ethiopia and Sudan. We conclude that the vaccines have probably been effective in controlling EA-1, but less so for the other topotypes and propose a more comprehensive representation of topotypes in the development of new vaccines in recognition of the considerable diversity and transboundary nature of serotype O.


Marine Genomics | 2016

Next-generation biology: Sequencing and data analysis approaches for non-model organisms.

Rute R. da Fonseca; Anders Albrechtsen; Gonçalo Espregueira Themudo; Jazmín Ramos-Madrigal; Jonas Andreas Sibbesen; Lasse Maretty; M. Lisandra Zepeda-Mendoza; Paula F. Campos; Rasmus Heller; Ricardo J. Pereira

As sequencing technologies become more affordable, it is now realistic to propose studying the evolutionary history of virtually any organism on a genomic scale. However, when dealing with non-model organisms it is not always easy to choose the best approach given a specific biological question, a limited budget, and challenging sample material. Furthermore, although recent advances in technology offer unprecedented opportunities for research in non-model organisms, they also demand unprecedented awareness from the researcher regarding the assumptions and limitations of each method. In this review we present an overview of the current sequencing technologies and the methods used in typical high-throughput data analysis pipelines. Subsequently, we contextualize high-throughput DNA sequencing technologies within their applications in non-model organism biology. We include tips regarding managing unconventional sample material, comparative and population genetic approaches that do not require fully assembled genomes, and advice on how to deal with low depth sequencing data.


PLOS ONE | 2013

Pan-African Genetic Structure in the African Buffalo (Syncerus caffer): Investigating Intraspecific Divergence

Nathalie Smitz; Cécile Berthouly; Daniel Cornélis; Rasmus Heller; Pim van Hooft; Philippe Chardonnet; Alexandre Caron; Herbert H. T. Prins; Bettine Janse van Vuuren; Hans H. De Iongh; Johan Michaux

The African buffalo (Syncerus caffer) exhibits extreme morphological variability, which has led to controversies about the validity and taxonomic status of the various recognized subspecies. The present study aims to clarify these by inferring the pan-African spatial distribution of genetic diversity, using a comprehensive set of mitochondrial D-loop sequences from across the entire range of the species. All analyses converged on the existence of two distinct lineages, corresponding to a group encompassing West and Central African populations and a group encompassing East and Southern African populations. The former is currently assigned to two to three subspecies (S. c. nanus, S. c. brachyceros, S. c. aequinoctialis) and the latter to a separate subspecies (S. c. caffer). Forty-two per cent of the total amount of genetic diversity is explained by the between-lineage component, with one to seventeen female migrants per generation inferred as consistent with the isolation-with-migration model. The two lineages diverged between 145 000 to 449 000 years ago, with strong indications for a population expansion in both lineages, as revealed by coalescent-based analyses, summary statistics and a star-like topology of the haplotype network for the S. c. caffer lineage. A Bayesian analysis identified the most probable historical migration routes, with the Cape buffalo undertaking successive colonization events from Eastern toward Southern Africa. Furthermore, our analyses indicate that, in the West-Central African lineage, the forest ecophenotype may be a derived form of the savanna ecophenotype and not vice versa, as has previously been proposed. The African buffalo most likely expanded and diverged in the late to middle Pleistocene from an ancestral population located around the current-day Central African Republic, adapting morphologically to colonize new habitats, hence developing the variety of ecophenotypes observed today.


Molecular Ecology | 2010

Can small wildlife conservancies maintain genetically stable populations of large mammals? Evidence for increased genetic drift in geographically restricted populations of Cape buffalo in East Africa.

Rasmus Heller; J. B. A. Okello; Hans R. Siegismund

The Cape buffalo (Syncerus caffer caffer) is one of the dominant and most widespread herbivores in sub‐Saharan Africa. High levels of genetic diversity and exceptionally low levels of population differentiation have been found in the Cape buffalo compared to other African savannah ungulates. Patterns of genetic variation reveal large effective population sizes and indicate that Cape buffalos have historically been interbreeding across considerable distances. Throughout much of its range, the Cape buffalo is now largely confined to protected areas due to habitat fragmentation and increasing human population densities, possibly resulting in genetic erosion. Ten buffalo populations in Kenya and Uganda were examined using seventeen microsatellite markers to assess the regional genetic structure and the effect of protected area size on measures of genetic diversity. Two nested levels of genetic structure were identified: a higher level partitioning populations into two clusters separated by the Victoria Nile and a lower level distinguishing seven genetic clusters, each defined by one or two study populations. Although relatively small geographic distances separate most of the study populations, the level of genetic differentiation found here is comparable to that among pan‐African populations. Overall, correlations between conservancy area and indices of genetic diversity suggest buffalo populations inhabiting small parks are showing signs of genetic erosion, stressing the need for more active management of such populations. Our findings raise concerns about the future of other African savannah ungulates with lower population sizes and inferior dispersal capabilities compared with the buffalo.


BMC Evolutionary Biology | 2010

Evolutionary analysis of foot-and-mouth disease virus serotype SAT 1 isolates from east africa suggests two independent introductions from southern africa

Abraham K. Sangula; Graham J. Belsham; Vincent B. Muwanika; Rasmus Heller; S. N. Balinda; Charles Masembe; Hans R. Siegismund

BackgroundIn East Africa, foot-and-mouth disease virus serotype SAT 1 is responsible for occasional severe outbreaks in livestock and is known to be maintained within the buffalo populations. Little is known about the evolutionary forces underlying its epidemiology in the region. To enhance our appreciation of the epidemiological status of serotype SAT 1 virus in the region, we inferred its evolutionary and phylogeographic history by means of genealogy-based coalescent methods using 53 VP1 coding sequences covering a sampling period from 1948-2007.ResultsThe VP1 coding sequence of 11 serotype SAT 1 FMD viruses from East Africa has been determined and compared with known sequences derived from other SAT 1 viruses from sub-Saharan Africa. Purifying (negative) selection and low substitution rates characterized the SAT 1 virus isolates in East Africa. Two virus groups with probable independent introductions from southern Africa were identified from a maximum clade credibility tree. One group was exclusive to Uganda while the other was present within Kenya and Tanzania.ConclusionsOur results provide a baseline characterization of the inter-regional spread of SAT 1 in sub-Saharan Africa and highlight the importance of a regional approach to trans-boundary animal disease control in order to monitor circulating strains and apply appropriate vaccines.

Collaboration


Dive into the Rasmus Heller's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lounès Chikhi

Instituto Gulbenkian de Ciência

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Graham J. Belsham

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Daniel Cornélis

Centre de coopération internationale en recherche agronomique pour le développement

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge