Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ratakorn Srisuttee is active.

Publication


Featured researches published by Ratakorn Srisuttee.


Oncology Reports | 2012

Hepatitis B virus X (HBX) protein upregulates β-catenin in a human hepatic cell line by sequestering SIRT1 deacetylase

Ratakorn Srisuttee; Sang Seok Koh; Su Jin Kim; Waraporn Malilas; Wassamon Boonying; Il-Rae Cho; Byung Hak Jhun; Masafumi Ito; Yoshiyuki Horio; Edward Seto; Sangtaek Oh; Young-Hwa Chung

Hepatitis B virus X (HBX) protein has been reported to induce upregulation of β-catenin, a known proto-oncogene, in p53-knockout and p53-mutant hepatic cell lines both in a GSK-3β-dependent manner and via interaction with adenomatous polyposis coli, which results in protection from β-catenin degradation. In this study, we describe a novel mechanism for HBX-mediated upregulation of β-catenin. We observed that HBX interacts with SIRT1, a class III histone deacetylase. Furthermore, the presence of HBX attenuated the interaction between SIRT1 and β-catenin, leading to protection of β-catenin from the inhibitory action of SIRT1. Reduction of SIRT1 with siRNA or suppression of SIRT1 activity with nicotinamide upregulated β-catenin protein levels. In contrast, enhancement of SIRT1 activity with resveratrol reduced β-catenin protein levels. Furthermore, in Hep3B cells stably expressing HBX, overexpression of SIRT1 or treatment with resveratrol enhanced sensitivity to doxorubicin-induced apoptosis, indicating that upregulation of SIRT1 could be a therapeutic strategy for HBV-related hepatocellular carcinoma. Based on these results, we propose that HBX upregulates β-catenin by sequestering SIRT1, which leads to anticancer drug treatment resistance.


Biochemical and Biophysical Research Communications | 2012

SIRT1 inhibits proliferation of pancreatic cancer cells expressing pancreatic adenocarcinoma up-regulated factor (PAUF), a novel oncogene, by suppression of β-catenin.

Il-Rae Cho; Sang Seok Koh; Waraporn Malilas; Ratakorn Srisuttee; Jeong Moon; Young Whan Choi; Yoshiyuki Horio; Sangtaek Oh; Young-Hwa Chung

Because we found in a recent study that pancreatic adenocarcinoma up-regulated factor (PAUF), a novel oncogene, induces a rapid proliferation of pancreatic cells by up-regulation of β-catenin, we postulated that β-catenin might be a target molecule for pancreatic cancer treatment. We thus speculated whether SIRT1, known to target β-catenin in a colon cancer model, suppresses β-catenin in those pancreatic cancer cells that express PAUF (Panc-PAUF). We further evaluated whether such suppression would lead to inhibition of the proliferation of these cells. The ectopic expression of either SIRT1 or resveratrol (an activator of SIRT1) suppressed levels of β-catenin protein and its transcriptional activity in Panc-PAUF cells. Conversely, suppression of SIRT1 expression by siRNA enhanced β-catenin expression and transcriptional activity. SIRT1 mutant analysis showed that nuclear localization of SIRT1 is not required for reduction of β-catenin. Treatment with MG132, a proteasomal inhibitor, restored β-catenin protein levels, suggesting that SIRT1-mediated degradation of β-catenin requires proteasomal activity. It was reported that inhibition of GSK-3β or Siah-1 stabilizes β-catenin in colon cancer cells, but suppression of GSK-3β or Siah-1 using siRNA in the presence of resveratrol instead diminished β-catenin protein levels in Panc-PAUF cells. This suggests that GSK-3β and Siah-1 are not involved in SIRT1-mediated degradation of β-catenin in the cells. Finally, activation of SIRT1 inhibited the proliferation of Panc-PAUF cells by down-regulation of cyclin-D1, a target molecule of β-catenin. These results suggest that SIRT1 activation may be a therapeutic strategy for treatment of pancreatic cancer cells that express PAUF via the down-regulation of β-catenin.


International Journal of Molecular Medicine | 2011

Up-regulation of Foxo4 mediated by hepatitis B virus X protein confers resistance to oxidative stress-induced cell death

Ratakorn Srisuttee; Sang Seok Koh; Eun-Hee Park; Il Rae Cho; Hye Jin Min; Byung Hak Jhun; Dae Yeul Yu; Sun Park; Do Yun Park; Mo Ock Lee; Diego H. Castrillon; Randal N. Johnston; Young‑Hwa Chung

The hepatitis B virus X (HBX) protein, a regulatory protein of the hepatitis B virus (HBV), has been shown to generate reactive oxygen species (ROS) in human liver cell lines; however, the mechanism by which cells protect themselves under this oxidative stress is poorly understood. Here, we show that HBX induces the up-regulation of Forkhead box class O 4 (Foxo4) not only in Chang cells stably expressing HBX (Chang-HBX) but also in primary hepatic tissues from HBX-transgenic mice. HBX also increased ROS, but reduction of the abundance of ROS using N-acetylcystein (NAC) diminished the levels of Foxo4. Elevated Foxo4 was also detected in nuclei of Chang-HBX cells but not in Chang cells stably expressing the vector (Chang-Vec), suggesting that HBX activates the transcriptional activity of Foxo4. When we examined whether HBX bypasses JNK signaling that targets Foxo4, we found that the activity of JNK but not of ERK is required for the up-regulation of Foxo4 even in the presence of HBX. Furthermore, the reduction of Foxo4 levels using siRNA or a JNK inhibitor rendered Chang-HBX cells sensitive to apoptosis under oxidative stress, suggesting that up-regulation of Foxo4 mediated by HBX enhances resistances to oxidative stress-induced cell death. Accordingly, we propose that Foxo4 may be a useful target for suppression in the treatment of HBV-associated hepatocellular carcinoma cells.


Cancer Gene Therapy | 2013

Cancer upregulated gene 2, a novel oncogene, confers resistance to oncolytic vesicular stomatitis virus through STAT1-OASL2 signaling

Malilas W; Sang Seok Koh; Ratakorn Srisuttee; Boonying W; Il-Rae Cho; Jeong Cs; Randal N. Johnston; Young-Hwa Chung

We have recently found a novel oncogene, named cancer upregulated gene 2 (CUG2), which activates Ras and mitogen-activated protein kinases (MAPKs), including ERK, JNK and p38 MAPK. Because activation of these signaling pathways has previously been shown to enhance cancer cell susceptibility to oncolysis by certain viruses, we examined whether vesicular stomatitis virus (VSV) could function as a potential therapeutic agent by efficiently inducing cytolysis in cells transformed by CUG2. Unexpectedly, NIH3T3 cells stably expressing CUG2 (NIH-CUG2) were resistant to VSV because of the activation of signal transducers and activators of transcription 1 (STAT1). The result was supported by evidence showing that suppression of STAT1 with short interference RNA (siRNA) renders cells susceptible to VSV. Furthermore, 2′–5′ oligoadenylate synthetase-like (OASL) 2 was the most affected by STAT1 expression level among anti-viral proteins and furthermore suppression of OASL2 mRNA level caused NIH-CUG2 cells to succumb to VSV as seen in NIH-CUG2 cells treated with STAT1 siRNA. In addition, Colon26L5 carcinoma cells stably expressing CUG2 (Colon26L5-CUG2) exhibited resistance to VSV, whereas Colon26L5 stably expressing a control vector yielded to VSV infection. Moreover, Colon26L5-CUG2 cells stably suppressing STAT1 succumbed to VSV infection, resulting in apoptosis. Taken together, we propose that VSV treatment combined with the selective regulation of genes such as STAT1 and OASL2 will improve therapeutic outcomes for CUG2-overexpressing tumors.


Cancer Gene Therapy | 2010

CUG2, a novel oncogene confers reoviral replication through Ras and p38 signaling pathway

Eun-Hee Park; Il-Rae Cho; Ratakorn Srisuttee; Hye-Jin Min; Oh Mj; Jeong Yj; Byung Hak Jhun; Randal N. Johnston; Soojin Lee; Sang Seok Koh; Young-Hwa Chung

As we have recently found a novel oncogene, the cancer-upregulated gene 2 (CUG2), which was elevated in a variety of tumor tissues such as the ovary, liver, lung and pancreas, we examined whether reovirus could efficiently induce cytolysis in cancer cells expressing CUG2 and thus be used as a potential cancer therapeutic agent. In this study, we describe experiments in which we use reovirus to treat NIH3T3 cells stably expressing either CUG2 (NIH-CUG2) or vector only (NIH-Vec). NIH-CUG2 cells readily support reoviral proliferation and undergo apoptosis, whereas NIH-Vec cells are highly resistant to reoviral infection and virus-induced apoptosis. This notable result may be explained by the observation that CUG2 expression inhibits PKR activation, leading to reoviral proliferation in nonpermissive NIH3T3 cells. Furthermore, reovirus infection results in almost complete regression of tumorgenic NIH-CUG2 cells in transplanted nude mice. As we found that CUG2 enhances activation of MAPK (ERK, JNK and p38), Src kinase and Ras, we examined whether CUG2 confers reoviral replication independent of the Ras or p38 MAPK signaling pathway. From these experiments we found that either inhibition of p38 MAPK or Ras blocks reoviral proliferation even in the presence of CUG2 but inhibition of ERK, JNK and Src kinase does not, indicating that activation of p38 MAPK and Ras has critical roles in reoviral replication in CUG2-expressing tumor cells. Accordingly, we propose that reovirus can be useful in the treatment of transformed cells expressing CUG2, which is commonly detected in various tumor tissues.


International Journal of Oncology | 2013

Cancer upregulated gene 2, a novel oncogene, enhances migration and drug resistance of colon cancer cells via STAT1 activation.

Waraporn Malilas; Sang Seok Koh; Seokho Kim; Ratakorn Srisuttee; Il-Rae Cho; Jeong Moon; Hwa-Seung Yoo; Sangtaek Oh; Randal N. Johnston; Young-Hwa Chung

Cancer upregulated gene (CUG) 2, as a novel oncogene, has been predominantly detected in various cancer tissues, such as ovary, liver, lung and colon. We recently showed that CUG2 elevates STAT1 activity, leading to resistance to infection by oncolytic vesicular stomatitis virus. To investigate a possible role for CUG2-induced activation of STAT1 in oncogenesis, we first established a colon cancer cell line stably expressing CUG2 (Colon26L5-CUG2). Colon26L5-CUG2 exhibited higher levels not only in phosphorylation of STAT1, but also phosphorylation of Jak1/Tyk2 compared to that of the control (Colon26L5-Vec) cell line. Inhibition of Akt or ERK activity reduced phosphorylation of STAT1 in Colon26L5-CUG2 cells whereas inhibition of p38 MAPK did not significantly decrease levels of STAT1 phosphorylation, indicating that cell proliferation signals may be involved in CUG2-mediated activation of STAT1. Suppression of STAT1 expression diminished cell migration and wound healing compared to the control cells. In addition, since CUG2 expression conferred resistance to DNA damage caused by doxorubicin treatment, we investigated whether STAT1 is involved in resistance to doxorubicin-induced cell death. We found that STAT1 was not activated in Colon26L5-Vec cells while phosphorylated STAT1 was maintained in Colon26L5-CUG2 cells during doxorubicin treatment. Furthermore, suppression of STAT1 expression sensitized Colon26L5-CUG2 cells to doxorubicin-induced apoptosis whereas the control cells exhibited resistance to doxorubicin. Taken together, our results suggest that CUG2 enhances metastasis and drug resistance through STAT1 activation, which eventually contributes to tumor progression.


International Journal of Molecular Medicine | 2012

Hepatitis B virus X protein inhibits extracellular IFN-α-mediated signal transduction by downregulation of type I IFN receptor

Il-Rae Cho; Myung-Ju Oh; Sang Seok Koh; Waraporn Malilas; Ratakorn Srisuttee; Byung Hak Jhun; Sandra Pellegrini; Serge Y. Fuchs; Young-Hwa Chung

We have previously shown that hepatitis B virus (HBV) protein X (HBX), a regulatory protein of HBV, activates Stat1, leading to type I interferon (IFN) production. Type I IFN secreted from HBX-expressing hepatic cells enforces antiviral signals through its binding to the cognate type I IFN receptor. We therefore investigated how cells handle this detrimental situation. Interestingly, compared to Chang cells stably expressing an empty vector (Chang-Vec), Chang cells stably expressing HBX (Chang-HBX) showed lower levels of IFN-α receptor 1 (IFNAR1) protein, a subunit of type I IFN receptor. The levels of IFNAR1 transcripts detected in Chang-HBX cells were lower than the levels in Chang-Vec cells, indicating that HBX regulates IFNAR1 at the transcriptional level. Moreover, we observed that HBX induced the translocation of IFNAR1 to the cytoplasm. Consistent with these observations, HBX also downregulated Tyk2, which is required for the stable expression of IFNAR1 on the cell surface. Eventually, Chang-HBX cells consistently maintained a lower level of IFNAR1 expression and displayed no proper response to IFN-α, while Chang-Vec cells exhibited a proper response to IFN-α treatment. Taken together, we propose that HBX downregulates IFNAR1, leading to the avoidance of extracellular IFN-α signal transduction.


Biochemical and Biophysical Research Communications | 2012

SIRT1 sensitizes hepatocellular carcinoma cells expressing hepatitis B virus X protein to oxidative stress-induced apoptosis

Ratakorn Srisuttee; Sang Seok Koh; Waraporn Malilas; Jeong Moon; Il-Rae Cho; Byung Hak Jhun; Yoshiyuki Horio; Young-Hwa Chung

We previously showed that SIRT1 deacetylase inhibits proliferation of hepatocellular carcinoma cells expressing hepatitis B virus (HBV) X protein (HBX), by destabilization of β-catenin. Here, we report another role for SIRT1 in HBX-mediated resistance to oxidative stress. Ectopic expression and enhanced activity of SIRT1 sensitize Hep3B cells stably expressing HBX to oxidative stress-induced apoptosis. SIRT1 mutant analysis showed that nuclear localization of SIRT1 is not required for sensitization of oxidation-mediated apoptosis. Furthermore, ectopic expression of SIRT1 and treatment with resveratrol (a SIRT1 activator) attenuated JNK phosphorylation, which is a prerequisite for resistance to oxidative stress-induced apoptosis. Conversely, suppression of SIRT1 activity with nicotinamide inhibited the effect of resveratrol on JNK phosphorylation, leading to restoration of resistance to oxidation-induced apoptosis. Taken together, these results suggest that up-regulation of SIRT1 under oxidative stress may be a therapeutic strategy for treatment of hepatocellular carcinoma cells related to HBV through inhibition of JNK activation.


Cancer Gene Therapy | 2009

Expression of HBX, an oncoprotein of hepatitis B virus, blocks reoviral oncolysis of hepatocellular carcinoma cells

Eun-Hee Park; Sang Seok Koh; Ratakorn Srisuttee; Il-Rae Cho; Hye-Jin Min; Byung Hak Jhun; Lee Ys; Jang Kl; Kim Ch; Randal N. Johnston; Young-Hwa Chung

Although reovirus has been used in tests as a potential cancer therapeutic agent against a variety of cancer cells, its application to hepatocellular carcinoma cells, in which the hepatitis B virus (HBV) X (HBX) protein of HBV plays a primary role, has not yet been explored. Here, we describe experiments in which we use reovirus to treat Chang liver carcinoma cells expressing either a vector only (Chang-vec) or a vector encoding HBX protein (Chang-HBX). Although Chang-vec cells readily support reoviral proliferation and undergo apoptosis, Chang-HBX cells are highly resistant to reoviral infection and virus-induced apoptosis, even though HBX protein induces activation of Ras and inactivation of PKR, which are normally thought to enhance reoviral oncolysis. The resistance of Chang-HBX cells to reovirus may instead be explained by HBX-induced downregulation of death receptor 5 and activation of Stat1. Phosphorylated Stat1 activates interferon (IFN)-stimulated regulatory element (ISRE)- and IFN-γ-activated sequence (GAS)-mediated transcription, leading to the production of IFN-β, whereas the reduced expression of Stat1 with its siRNA results in a decrease in IFN-β production, by which Chang-HBX cells eventually succumb to reovirus infection. This result further indicates that HBX induces the establishment of an antiviral state through Stat1 activation. Thus, it appears that active Ras does not override the antiviral effect mediated by the activation of Stat1. Accordingly, we report that HBX, an oncoprotein of HBV, can prevent reoviral oncolysis of hepatocellular carcinoma. This suggests there may be limits to the practical application of reovirus in the treatment of human cancers already expressing other oncoviral proteins.


Molecular Medicine Reports | 2015

Upregulation of Stat1-HDAC4 confers resistance to etoposide through enhanced multidrug resistance 1 expression in human A549 lung cancer cells

Chutima Kaewpiboon; Ratakorn Srisuttee; Waraporn Malilas; Jeong Moon; Sangtaek Oh; Hye Gwang Jeong; Randal N. Johnston; Wanchai Assavalapsakul; Young‑Hwa Chung

Despite efforts to develop efficient chemotherapeutic drug strategies to treat cancer, acquired drug resistance is a commonly encountered problem. In the present study, to investigate this phenomenon, human A549 lung cancer cells resistant to the topoisomerase inhibitor etoposide (A549RT‑eto) were used and compared with A549 parental cells. A549RT‑eto cells demonstrated increased resistance to etoposide‑induced apoptosis when compared with A549 parental cells. Notably, A549RT‑eto cells were observed to exhibit greater levels of histone deacetylase 4 (HDAC4), phospho‑Stat1 and P‑glycoprotein [P‑gp; encoded by the multidrug resistance 1 (MDR1) gene], compared with A549 cells. To address whether HDAC4 protein is involved in etoposide resistance in A549 cells, A549RT‑eto cells were treated with trichostatin A (TSA; an HDAC inhibitor) during etoposide treatment. The combined treatment was demonstrated to enhance etoposide‑induced apoptosis and reduce expression levels of HDAC4, P‑gp and phospho‑Stat1. In addition, the suppression of Stat1 with siRNA enhanced etoposide‑induced apoptosis and reduced the expression levels of HDAC4 and P‑gp, suggesting that Stat1 is essential in the regulation of resistance to etoposide, and in the upregulation of P‑gp. Notably, TSA treatment reduced P‑gp transcript levels but Stat1 siRNA treatment did not, suggesting that P‑gp is regulated by HDAC at the transcriptional level and by Stat1 at the post‑transcriptional level. These results suggest that the upregulation of Stat1 and HDAC4 determines etoposide resistance through P‑gp expression in human A549 lung cancer cells.

Collaboration


Dive into the Ratakorn Srisuttee's collaboration.

Top Co-Authors

Avatar

Young-Hwa Chung

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

Il-Rae Cho

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

Sang Seok Koh

Korea Research Institute of Bioscience and Biotechnology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Byung Hak Jhun

Pusan National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eun-Hee Park

Pusan National University

View shared research outputs
Top Co-Authors

Avatar

Jeong Moon

Pusan National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hye-Jin Min

Pusan National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge