Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Raúl A. Marinelli is active.

Publication


Featured researches published by Raúl A. Marinelli.


Journal of Clinical Investigation | 1997

Rat cholangiocytes absorb bile acids at their apical domain via the ileal sodium-dependent bile acid transporter.

Konstantinos N. Lazaridis; Linh Pham; Pam Tietz; Raúl A. Marinelli; Piet C. deGroen; Susan Levine; Paul A. Dawson; Nicholas F. LaRusso

Although bile acid transport by bile duct epithelial cells, or cholangiocytes, has been postulated, the details of this process remain unclear. Thus, we performed transport studies with [3H]taurocholate in confluent polarized monolayers of normal rat cholangiocytes (NRC). We observed unidirectional (i.e., apical to basolateral) Na+-dependent transcellular transport of [3H]taurocholate. Kinetic studies in purified vesicles derived from the apical domain of NRC disclosed saturable Na+-dependent uptake of [3H]taurocholate, with apparent Km and Vmax values of 209+/-45 microM and 1.23+/-0.14 nmol/mg/10 s, respectively. Reverse transcriptase PCR (RT-PCR) using degenerate primers for both the rat liver Na+-dependent taurocholate-cotransporting polypeptide and rat ileal apical Na+-dependent bile acid transporter, designated Ntcp and ASBT, respectively, revealed a 206-bp product in NRC whose sequence was identical to the ASBT. Northern blot analysis demonstrated that the size of the ASBT transcript was identical in NRC, freshly isolated cholangiocytes, and terminal ileum. In situ RT-PCR on normal rat liver showed that the message for ASBT was present only in cholangiocytes. Immunoblots using a well-characterized antibody for the ASBT demonstrated a 48-kD protein present only in apical membranes. Indirect immunohistochemistry revealed apical localization of ASBT in cholangiocytes in normal rat liver. The data provide direct evidence that conjugated bile acids are taken up at the apical domain of cholangiocytes via the ASBT, and are consistent with the notion that cholangiocyte physiology may be directly influenced by bile acids.


Journal of Biological Chemistry | 1997

Secretin promotes osmotic water transport in rat cholangiocytes by increasing aquaporin-1 water channels in plasma membrane. Evidence for a secretin-induced vesicular translocation of aquaporin-1

Raúl A. Marinelli; Linh Pham; Peter Agre; Nicholas F. LaRusso

Although secretin is known to stimulate ductal bile secretion by directly interacting with cholangiocytes, the precise cellular mechanisms accounting for this choleretic effect are unknown. We have previously shown that secretin stimulates exocytosis in cholangiocytes and that these cells transport water mainly via the water channel aquaporin-1 (AQP1). In this study, we tested the hypothesis that secretin promotes osmotic water movement in cholangiocytes by inducing the exocytic insertion of AQP1 into plasma membranes. Exposure of highly purified isolated rat cholangiocytes to secretin caused significant, dose-dependent increases in osmotic membrane water permeability (P f ) (e.g. increased by 60% with 10−7 m secretin), which was reversibly inhibited by the water channel blocker HgCl2. Immunoblotting analysis of cholangiocyte membrane fractions showed that secretin caused up to a 3-fold increase in the amount of AQP1 in plasma membranes and a proportional decrease in the amount of the water channel in microsomes, suggesting a secretin-induced redistribution of AQP1 from intracellular to plasma membranes. Both the secretin-induced increase in cholangiocyte P f and AQP1 redistribution were blocked by two perturbations that inhibit secretin-stimulated exocytosis in cholangiocytes, i.e. treatment with colchicine and exposure at low temperatures (20 and 4 °C). Our results demonstrate that secretin increases AQP1-mediatedP f in cholangiocytes. Moreover, our studies implicate the microtubule-dependent vesicular translocation of AQP1 water channels to the plasma membrane, a mechanism that appears to be essential for secretin-induced ductal bile secretion and suggests that AQP1 can be regulated by membrane trafficking.


Journal of Biological Chemistry | 2001

The Water Channel Aquaporin-8 Is Mainly Intracellular in Rat Hepatocytes, and Its Plasma Membrane Insertion Is Stimulated by Cyclic AMP

Fabiana Garcia; Arlinet Kierbel; M. Cecilia Larocca; Sergio A. Gradilone; Patrick L. Splinter; Nicholas F. LaRusso; Raúl A. Marinelli

We previously found that water transport across hepatocyte plasma membranes occurs mainly via a non-channel mediated pathway. Recently, it has been reported that mRNA for the water channel, aquaporin-8 (AQP8), is present in hepatocytes. To further explore this issue, we studied protein expression, subcellular localization, and regulation of AQP8 in rat hepatocytes. By subcellular fractionation and immunoblot analysis, we detected anN-glycosylated band of ∼34 kDa corresponding to AQP8 in hepatocyte plasma and intracellular microsomal membranes. Confocal immunofluorescence microscopy for AQP8 in cultured hepatocytes showed a predominant intracellular vesicular localization. Dibutyryl cAMP (Bt2cAMP) stimulated the redistribution of AQP8 to plasma membranes. Bt2cAMP also significantly increased hepatocyte membrane water permeability, an effect that was prevented by the water channel blocker dimethyl sulfoxide. The microtubule blocker colchicine but not its inactive analog lumicolchicine inhibited the Bt2cAMP effect on both AQP8 redistribution to cell surface and hepatocyte membrane water permeability. Our data suggest that in rat hepatocytes AQP8 is localized largely in intracellular vesicles and can be redistributed to plasma membranes via a microtubule-depending, cAMP-stimulated mechanism. These studies also suggest that aquaporins contribute to water transport in cAMP-stimulated hepatocytes, a process that could be relevant to regulated hepatocyte bile secretion.


American Journal of Physiology-gastrointestinal and Liver Physiology | 1999

Secretin induces the apical insertion of aquaporin-1 water channels in rat cholangiocytes

Raúl A. Marinelli; Pamela S. Tietz; Linh Pham; Lisa Rueckert; Peter Agre; Nicholas F. LaRusso

Aquaporin-1 (AQP1) water channels are present in the apical and basolateral plasma membrane domains of bile duct epithelial cells, or cholangiocytes, and mediate the transport of water in these cells. We previously reported that secretin, a hormone known to stimulate ductal bile secretion, increases cholangiocyte osmotic water permeability and stimulates the redistribution of AQP1 from an intracellular vesicular pool to the cholangiocyte plasma membrane. Nevertheless, the target plasma membrane domain (i.e., basolateral or apical) for secretin-regulated trafficking of AQP1 in cholangiocytes is unknown, as is the functional significance of this process for the secretion of ductal bile. In this study, we used primarily an in vivo model (i.e., rats with cholangiocyte hyperplasia induced by bile duct ligation) to address these issues. AQP1 was quantitated by immunoblotting in apical and basolateral plasma membranes prepared from cholangiocytes isolated from rats 20 min after intravenous infusion of secretin. Secretin increased bile flow (78%, P < 0.01) as well as the amount of AQP1 in the apical cholangiocyte plasma membrane (127%, P < 0.05). In contrast, the amount of AQP1 in the basolateral cholangiocyte membrane and the specific activity of an apical cholangiocyte marker enzyme (i.e., γ-glutamyltranspeptidase) were unaffected by secretin. Similar observations were made when freshly isolated cholangiocytes were directly exposed to secretin. Immunohistochemistry for AQP1 in liver sections from secretin-treated rats showed intensified staining at the apical region of cholangiocytes. Pretreatment of rats with colchicine (but not with its inactive analog β-lumicolchicine) inhibited both the increases of AQP1 in the cholangiocyte plasma membrane (94%, P < 0.05) and the bile flow induced by secretin (54%, P < 0.05). Our results in vivo indicate that secretin induces the microtubule-dependent insertion of AQP1 exclusively into the secretory pole (i.e., apical membrane domain) of rat cholangiocytes, a process that likely accounts for the ability of secretin to stimulate ductal bile secretion.


Biochemical and Biophysical Research Communications | 2010

Aquaporin-8-facilitated mitochondrial ammonia transport.

Leandro R. Soria; Elena Fanelli; Nicola Altamura; Maria Svelto; Raúl A. Marinelli; Giuseppe Calamita

Aquaporin-8 (AQP8) is a membrane channel permeable to water and ammonia. As AQP8 is expressed in the inner mitochondrial membrane of several mammalian tissues, we studied the effect of the AQP8 expression on the mitochondrial transport of ammonia. Recombinant rat AQP8 was expressed in the yeast Saccharomyces cerevisiae. The presence of AQP8 in the inner membrane of yeast mitochondria was demonstrated by subcellular fractionation and immunoblotting analysis. The ammonia transport was determined in isolated mitochondria by stopped flow light scattering using formamide as ammonia analog. We found that the presence of AQP8 increased by threefold mitochondrial formamide transport. AQP8-facilitated mitochondrial formamide transport in rat native tissue was confirmed in liver (a mitochondrial AQP8-expressing tissue) vs. brain (a mitochondrial AQP8 non-expressing tissue). Comparative studies indicated that the AQP8-mediated mitochondrial movement of formamide was markedly higher than that of water. Together, our data suggest that ammonia diffusional transport is a major function for mitochondrial AQP8.


Toxicology and Applied Pharmacology | 2012

Mitochondrial aquaporin-8 knockdown in human hepatoma HepG2 cells causes ROS-induced mitochondrial depolarization and loss of viability.

Maria Julia Marchissio; Daniel E. Francés; Cristina E. Carnovale; Raúl A. Marinelli

Human aquaporin-8 (AQP8) channels facilitate the diffusional transport of H(2)O(2) across membranes. Since AQP8 is expressed in hepatic inner mitochondrial membranes, we studied whether mitochondrial AQP8 (mtAQP8) knockdown in human hepatoma HepG2 cells impairs mitochondrial H(2)O(2) release, which may lead to organelle dysfunction and cell death. We confirmed AQP8 expression in HepG2 inner mitochondrial membranes and found that 72h after cell transfection with siRNAs targeting two different regions of the human AQP8 molecule, mtAQP8 protein specifically decreased by around 60% (p<0.05). Studies in isolated mtAQP8-knockdown mitochondria showed that H(2)O(2) release, assessed by Amplex Red, was reduced by about 45% (p<0.05), an effect not observed in digitonin-permeabilized mitochondria. mtAQP8-knockdown cells showed an increase in mitochondrial ROS, assessed by dichlorodihydrofluorescein diacetate (+120%, p<0.05) and loss of mitochondrial membrane potential (-80%, p<0.05), assessed by tetramethylrhodamine-coupled quantitative fluorescence microscopy. The mitochondria-targeted antioxidant MitoTempol prevented ROS accumulation and dissipation of mitochondrial membrane potential. Cyclosporin A, a mitochondrial permeability transition pore blocker, also abolished the mtAQP8 knockdown-induced mitochondrial depolarization. Besides, the loss of viability in mtAQP8 knockdown cells verified by MTT assay, LDH leakage, and trypan blue exclusion test could be prevented by cyclosporin A. Our data on human hepatoma HepG2 cells suggest that mtAQP8 facilitates mitochondrial H(2)O(2) release and that its defective expression causes ROS-induced mitochondrial depolarization via the mitochondrial permeability transition mechanism, and cell death.


Current Neurovascular Research | 2004

Aquaporin Water Channels in Central Nervous System

Guillermo L. Lehmann; Sergio A. Gradilone; Raúl A. Marinelli

Aquaporins (AQPs) are a family of water-selective channels that provide a major pathway for osmotically driven water transport through cell membranes. Some members of the aquaporin family have been identified in the central nervous system (CNS). The water channel aquaporin 1 (AQP1) is restricted to the apical domain of the choroid plexus epithelial cells. The AQP4 is abundantly expressed in astrocyte foot processes and ependymocytes facing capillaries and brain-cerebrospinal fluid (CSF) interfaces, whereas AQP9 is localized in tanycytes and astrocytes processes. The mRNA for other aquaporin homologs (i.e., AQP3, 5, and 8) have been recently found in cultured astrocytes. Based on their subcellular localization and data obtained from functional studies, it is assumed that aquaporins are implicated in water movements in nervous tissue and may play a role in central osmoreception, K+ siphoning, and cerebrospinal fluid formation. There have been recent reports describing different aquaporin-responses under pathologic states leading to brain edema. The data available provide a better understanding of the mechanisms responsible for brain edema and indicate that aquaporins are potential targets for drug development.


Journal of Biological Chemistry | 2003

Water Transporting Properties of Hepatocyte Basolateral and Canalicular Plasma Membrane Domains

Raúl A. Marinelli; Pamela S. Tietz; Ariel J. Caride; Bing Q. Huang; Nicholas F. LaRusso

Previous work from our laboratory supports an important role for aquaporins (AQPs), a family of water channel proteins, in bile secretion by hepatocytes. To further define the pathways and molecular mechanisms for water movement across hepatocytes, we directly assessed osmotic water permeability (Pf) and activation energy (Ea) in highly purified, rat hepatocytes basolateral membrane vesicles (BLMV) and canalicular membrane (CMV) vesicles by measuring scattered light intensity using stopped-flow spectrophotometry. The time course of scattered light for BLMV and CMV fit well to a single-exponential function. In BLMV, Pf was 108 ± 4 μm·s–1 (25 °C) with an Ea of 7.7 kcal/mol; in CMV, Pf was 86 ± 5 μm·s–1 (25 °C) with an Ea of 8.0 kcal/mol. The AQP blocker, dimethyl sulfoxide, significantly inhibited the Pf of both basolateral (81 ± 4 μm·s–1; –25%) and canalicular (59 ± 4 μm·s–1; –30%) membrane vesicles. When CMV were isolated from hepatocytes treated with dibutyryl cAMP, a double-exponential fit was needed, implying two functionally different vesicle populations; one population had Pf and Ea values similar to those of CMV from untreated hepatocytes, but the other population had a very high Pf (655 ± 135 μm·s–1, 25 °C) and very low Ea (2.8 kcal/mol). Dimethyl sulfoxide completely inhibited the high Pf value in this second vesicle population. In contrast, Pf and Ea of BLMV were unaltered by cAMP treatment of hepatocytes. Our results are consistent with the presence of both lipid- and AQP-mediated pathways for basolateral and canalicular water movement across the hepatocyte plasma membrane barrier. Our data also suggest that the hepatocyte canalicular membrane domain is rate-limiting for transcellular water transport and that this domain becomes more permeable to water when hepatocytes are exposed to a choleretic agonist, presumably by insertion of AQP molecules. These data suggest a molecular mechanism for the efficient coupling of osmotically active solutes and water transport during canalicular bile formation.


Biology of the Cell | 2012

Biophysical assessment of aquaporin‐9 as principal facilitative pathway in mouse liver import of glucogenetic glycerol

Giuseppe Calamita; Patrizia Gena; Domenico Ferri; Anna Rosito; Aleksandra Rojek; Søren Nielsen; Raúl A. Marinelli; Gema Frühbeck; Maria Svelto

Lipolytic glycerol, released from adipocytes, flows through the bloodstream to the liver, where its utilisation in supplying hepatocyte gluconeogenesis is rate‐limited by the permeation step. An aquaglyceroporin expressed in hepatocytes, aquaporin‐9 (AQP9), has been often linked to liver uptake of glycerol. However, the truthfulness of this postulation and the potential existence of additional pathways of glycerol import by hepatocytes have never been assessed directly. Here, we define the identity and extent of liver glycerol transport and evaluate the correlation between hepatic AQP9 expression and glycerol permeability (Pgly) in AQP9+/+ wild‐type mice in different nutritional states and circulating insulin levels. The liver Pgly of AQP9 null mice is also assessed.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2008

LPS induces the TNF-α-mediated downregulation of rat liver aquaporin-8: role in sepsis-associated cholestasis

Guillermo L. Lehmann; Flavia I. Carreras; Leandro R. Soria; Sergio A. Gradilone; Raúl A. Marinelli

Although bacterial lipopolysaccharides (LPS) are known to cause cholestasis in sepsis, the molecular mechanisms accounting for this effect are only partially known. Because aquaporin-8 (AQP8) seems to facilitate the canalicular osmotic water movement during hepatocyte bile formation, we studied its gene and functional expression in LPS-induced cholestasis. By subcellular fractionation and immunoblotting analysis, we found that 34-kDa AQP8 was significantly decreased by 70% in plasma (canalicular) and intracellular (vesicular) liver membranes. However, expression and subcellular localization of hepatocyte sinusoidal AQP9 were unaffected. Immunohistochemistry for liver AQPs confirmed these observations. Osmotic water permeability (P(f)) of canalicular membranes, measured by stopped-flow spectrophotometry, was significantly reduced (65 +/- 1 vs. 49 +/- 1 microm/s) by LPS, consistent with defective canalicular AQP8 functional expression. By Northern blot analysis, we found that 1.5-kb AQP8 mRNA expression was increased by 80%, suggesting a posttranscriptional mechanism of protein reduction. The tumor necrosis factor-alpha (TNF-alpha) receptor fusion protein TNFp75:Fc prevented the LPS-induced impairment of AQP8 expression and bile flow, suggesting the cytokine TNF-alpha as a major mediator of LPS effect. Accordingly, studies in hepatocyte primary cultures indicated that recombinant TNF-alpha downregulated AQP8. The effect of TNF-alpha was prevented by the lysosomal protease inhibitors leupeptin or chloroquine or by the proteasome inhibitors MG132 or lactacystin, suggesting a cytokine-induced AQP8 proteolysis. In conclusion, our data suggest that LPS induces the TNF-alpha-mediated posttranscriptional downregulation of AQP8 functional expression in hepatocytes, a mechanism potentially relevant to the molecular pathogenesis of sepsis-associated cholestasis.

Collaboration


Dive into the Raúl A. Marinelli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leandro R. Soria

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Guillermo L. Lehmann

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Julieta Marrone

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emilio A. Rodríguez Garay

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Flavia I. Carreras

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Maria C. Larocca

National Scientific and Technical Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge