Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Raul D. Santos is active.

Publication


Featured researches published by Raul D. Santos.


The Lancet | 2010

Mipomersen, an apolipoprotein B synthesis inhibitor, for lowering of LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia: a randomised, double-blind, placebo-controlled trial

Frederick J. Raal; Raul D. Santos; Dirk Blom; A. David Marais; Min-Ji Charng; William C. Cromwell; Robin H. Lachmann; Daniel Gaudet; Ju L. Tan; Scott Chasan-Taber; Diane L. Tribble; JoAnn Flaim; Stanley T. Crooke

BACKGROUND Homozygous familial hypercholesterolaemia is a rare genetic disorder in which both LDL-receptor alleles are defective, resulting in very high concentrations of LDL cholesterol in plasma and premature coronary artery disease. This study investigated whether an antisense inhibitor of apolipoprotein B synthesis, mipomersen, is effective and safe as an adjunctive agent to lower LDL cholesterol concentrations in patients with this disease. METHODS This randomised, double-blind, placebo-controlled, phase 3 study was undertaken in nine lipid clinics in seven countries. Patients aged 12 years and older with clinical diagnosis or genetic confirmation of homozygous familial hypercholesterolaemia, who were already receiving the maximum tolerated dose of a lipid-lowering drug, were randomly assigned to mipomersen 200 mg subcutaneously every week or placebo for 26 weeks. Randomisation was computer generated and stratified by weight (<50 kg vs >/=50 kg) in a centralised blocked randomisation, implemented with a computerised interactive voice response system. All clinical, medical, and pharmacy personnel, and patients were masked to treatment allocation. The primary endpoint was percentage change in LDL cholesterol concentration from baseline. Analysis was by intention to treat. This trial is registered with ClinicalTrials.gov, number NCT00607373. FINDINGS 34 patients were assigned to mipomersen and 17 to placebo; data for all patients were analysed. 45 patients completed the 26-week treatment period (28 mipomersen, 17 placebo). Mean concentrations of LDL cholesterol at baseline were 11.4 mmol/L (SD 3.6) in the mipomersen group and 10.4 mmol/L (3.7) in the placebo group. The mean percentage change in LDL cholesterol concentration was significantly greater with mipomersen (-24.7%, 95% CI -31.6 to -17.7) than with placebo (-3.3%, -12.1 to 5.5; p=0.0003). The most common adverse events were injection-site reactions (26 [76%] patients in mipomersen group vs four [24%] in placebo group). Four (12%) patients in the mipomersen group but none in the placebo group had increases in concentrations of alanine aminotransferase of three times or more the upper limit of normal. INTERPRETATION Inhibition of apolipoprotein B synthesis by mipomersen represents a novel, effective therapy to reduce LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia who are already receiving lipid-lowering drugs, including high-dose statins. FUNDING ISIS Pharmaceuticals and Genzyme Corporation.


European Heart Journal | 2015

Statin-associated muscle symptoms: impact on statin therapy—European Atherosclerosis Society Consensus Panel Statement on Assessment, Aetiology and Management

Erik S. G. Stroes; Paul D. Thompson; Alberto Corsini; Georgirene D. Vladutiu; Frederick J. Raal; Kausik K. Ray; Michael Roden; Evan A. Stein; Lale Tokgozoglu; Børge G. Nordestgaard; Eric Bruckert; Guy De Backer; Ronald M. Krauss; Ulrich Laufs; Raul D. Santos; Robert A. Hegele; G. Kees Hovingh; Lawrence A. Leiter; François Mach; Winfried März; Connie B. Newman; Olov Wiklund; Terry A. Jacobson; Alberico L. Catapano; M. John Chapman; Henry N. Ginsberg

Statin-associated muscle symptoms (SAMS) are one of the principal reasons for statin non-adherence and/or discontinuation, contributing to adverse cardiovascular outcomes. This European Atherosclerosis Society (EAS) Consensus Panel overviews current understanding of the pathophysiology of statin-associated myopathy, and provides guidance for diagnosis and management of SAMS. Statin-associated myopathy, with significant elevation of serum creatine kinase (CK), is a rare but serious side effect of statins, affecting 1 per 1000 to 1 per 10 000 people on standard statin doses. Statin-associated muscle symptoms cover a broader range of clinical presentations, usually with normal or minimally elevated CK levels, with a prevalence of 7–29% in registries and observational studies. Preclinical studies show that statins decrease mitochondrial function, attenuate energy production, and alter muscle protein degradation, thereby providing a potential link between statins and muscle symptoms; controlled mechanistic and genetic studies in humans are necessary to further understanding. The Panel proposes to identify SAMS by symptoms typical of statin myalgia (i.e. muscle pain or aching) and their temporal association with discontinuation and response to repetitive statin re-challenge. In people with SAMS, the Panel recommends the use of a maximally tolerated statin dose combined with non-statin lipid-lowering therapies to attain recommended low-density lipoprotein cholesterol targets. The Panel recommends a structured work-up to identify individuals with clinically relevant SAMS generally to at least three different statins, so that they can be offered therapeutic regimens to satisfactorily address their cardiovascular risk. Further research into the underlying pathophysiological mechanisms may offer future therapeutic potential.


European Heart Journal | 2014

Homozygous familial hypercholesterolaemia: new insights and guidance for clinicians to improve detection and clinical management. A position paper from the Consensus Panel on Familial Hypercholesterolaemia of the European Atherosclerosis Society

Marina Cuchel; Eric Bruckert; Henry N. Ginsberg; Raal Fj; Raul D. Santos; Robert A. Hegele; Jan Albert Kuivenhoven; Børge G. Nordestgaard; Olivier S. Descamps; Elisabeth Steinhagen-Thiessen; Anne Tybjærg-Hansen; Gerald F. Watts; Maurizio Averna; Catherine Boileau; Jan Borén; Alberico L. Catapano; Joep C. Defesche; G. Kees Hovingh; Steve E. Humphries; Petri T. Kovanen; Luis Masana; Päivi Pajukanta; Parhofer Kg; Kausik K. Ray; Anton F. H. Stalenhoef; Erik S. G. Stroes; Marja-Riitta Taskinen; Albert Wiegman; Olov Wiklund; M. John Chapman

Aims Homozygous familial hypercholesterolaemia (HoFH) is a rare life-threatening condition characterized by markedly elevated circulating levels of low-density lipoprotein cholesterol (LDL-C) and accelerated, premature atherosclerotic cardiovascular disease (ACVD). Given recent insights into the heterogeneity of genetic defects and clinical phenotype of HoFH, and the availability of new therapeutic options, this Consensus Panel on Familial Hypercholesterolaemia of the European Atherosclerosis Society (EAS) critically reviewed available data with the aim of providing clinical guidance for the recognition and management of HoFH. Methods and results Early diagnosis of HoFH and prompt initiation of diet and lipid-lowering therapy are critical. Genetic testing may provide a definitive diagnosis, but if unavailable, markedly elevated LDL-C levels together with cutaneous or tendon xanthomas before 10 years, or untreated elevated LDL-C levels consistent with heterozygous FH in both parents, are suggestive of HoFH. We recommend that patients with suspected HoFH are promptly referred to specialist centres for a comprehensive ACVD evaluation and clinical management. Lifestyle intervention and maximal statin therapy are the mainstays of treatment, ideally started in the first year of life or at an initial diagnosis, often with ezetimibe and other lipid-modifying therapy. As patients rarely achieve LDL-C targets, adjunctive lipoprotein apheresis is recommended where available, preferably started by age 5 and no later than 8 years. The number of therapeutic approaches has increased following approval of lomitapide and mipomersen for HoFH. Given the severity of ACVD, we recommend regular follow-up, including Doppler echocardiographic evaluation of the heart and aorta annually, stress testing and, if available, computed tomography coronary angiography every 5 years, or less if deemed necessary. Conclusion This EAS Consensus Panel highlights the need for early identification of HoFH patients, prompt referral to specialized centres, and early initiation of appropriate treatment. These recommendations offer guidance for a wide spectrum of clinicians who are often the first to identify patients with suspected HoFH.


Circulation | 2009

Lipid Treatment Assessment Project 2: A Multinational Survey to Evaluate the Proportion of Patients Achieving Low-Density Lipoprotein Cholesterol Goals

David D. Waters; Carlos Brotons; Cheng Wen Chiang; Jean Ferrières; JoAnne M. Foody; J. Wouter Jukema; Raul D. Santos; Juan Verdejo; Michael Messig; Ruth McPherson; Ki Bae Seung; Lisa Tarasenko

Background— Information about physicians’ adherence to cholesterol management guidelines remains scant. The present survey updates our knowledge of lipid management worldwide. Methods and Results— Lipid levels were determined at enrollment in dyslipidemic adult patients on stable lipid-lowering therapy in 9 countries. The primary end point was the success rate, defined as the proportion of patients achieving appropriate low-density lipoprotein cholesterol (LDL-C) goals for their given risk. The mean age of the 9955 evaluable patients was 62±12 years; 54% were male. Coronary disease and diabetes mellitus had been diagnosed in 30% and 31%, respectively, and 14% were current smokers. Current treatment consisted of a statin in 75%. The proportion of patients achieving LDL-C goals according to relevant national guidelines ranged from 47% to 84% across countries. In low-, moderate-, and high-risk groups, mean LDL-C was 119, 109, and 91 mg/dL and mean high-density lipoprotein cholesterol was 62, 49, and 50 mg/dL, respectively. The success rate for LDL-C goal achievement was 86% in low-, 74% in moderate-, and 67% in high-risk patients (73% overall). However, among coronary heart disease patients with ≥2 risk factors, only 30% attained the optional LDL-C goal of <70 mg/dL. In the entire cohort, high-density lipoprotein cholesterol was <40 mg/dL in 19%, 40 to 60 mg/dL in 55%, and >60 mg/dL in 26% of patients. Conclusions— Although there is room for improvement, particularly in very-high-risk patients, these results indicate that lipid-lowering therapy is being applied much more successfully than it was a decade ago.


Atherosclerosis | 2009

Uric acid: A marker of increased cardiovascular risk.

Ana Carolina Moron Gagliardi; Marcio H. Miname; Raul D. Santos

The relationship between uric acid and cardiovascular disease has been known since the 19th century, after that many authors reported the classical association of gout, hypertension, obesity and cardiovascular disease. With the exception of specific genetic defects in purine metabolism, increased uric acid is generally associated with important risk factors for atherosclerosis like hypertension, abdominal obesity, insulin resistance, the metabolic syndrome and renal failure. Studies have clearly shown an association between increased uric acid concentrations with oxidative stress, endothelial dysfunction, inflammation, subclinical atherosclerosis and an increased risk of cardiovascular events. Increased uric acid levels are independent markers of cardiovascular disease risk. Prospective studies are necessary to show that reduction of uric acid levels prevent cardiovascular events.


Journal of Clinical Lipidology | 2014

An International Atherosclerosis Society Position Paper: Global recommendations for the management of dyslipidemia

Scott M. Grundy; Hidenori Arai; Philip J. Barter; Thomas P. Bersot; D. John Betteridge; Rafael Carmena; Ada Cuevas; Michael Davidson; Jacques Genest; Y. Antero Kesäniemi; Shaukat Sadikot; Raul D. Santos; Andrey V. Susekov; Rody G. Sy; S. LaleTokgözoglu; Gerald F. Watts; Dong Zhao

An international panel of the International Atherosclerosis Society has developed a new set of recommendations for management of dyslipidemia. The panel identifies non-high density lipoprotein cholesterol (non-HDL-C) as the major atherogenic lipoprotein. Primary and secondary prevention are considered separately. Optimal levels for atherogenic lipoproteins are derived for the two forms of prevention. For primary prevention, the recommendations emphasize lifestyle therapies to reduce atherogenic lipoproteins; drug therapy is reserved for higher risk subjects. Risk assessment is based on estimation of lifetime risk according to differences in baseline population risk in different nations or regions. Secondary prevention emphasizes use of cholesterol-lowering drugs to attain optimal levels of atherogenic lipoproteins.


European Heart Journal | 2015

Familial hypercholesterolaemia in children and adolescents: gaining decades of life by optimizing detection and treatment

Albert Wiegman; Samuel S. Gidding; Gerald F. Watts; M.J. Chapman; Henry N. Ginsberg; Marina Cuchel; Leiv Ose; Maurizio Averna; Catherine Boileau; Jan Borén; Eric Bruckert; A.L. Catapano; Joep C. Defesche; Olivier S. Descamps; Robert A. Hegele; G.K. Hovingh; S.E. Humphries; Petri T. Kovanen; Jan Albert Kuivenhoven; Luis Masana; Børge G. Nordestgaard; Päivi Pajukanta; Klaus G. Parhofer; Frederick J. Raal; Kausik K. Ray; Raul D. Santos; Anton F. H. Stalenhoef; Elisabeth Steinhagen-Thiessen; Erik S.G. Stroes; Marja-Riitta Taskinen

Familial hypercholesterolaemia (FH) is a common genetic cause of premature coronary heart disease (CHD). Globally, one baby is born with FH every minute. If diagnosed and treated early in childhood, individuals with FH can have normal life expectancy. This consensus paper aims to improve awareness of the need for early detection and management of FH children. Familial hypercholesterolaemia is diagnosed either on phenotypic criteria, i.e. an elevated low-density lipoprotein cholesterol (LDL-C) level plus a family history of elevated LDL-C, premature coronary artery disease and/or genetic diagnosis, or positive genetic testing. Childhood is the optimal period for discrimination between FH and non-FH using LDL-C screening. An LDL-C ≥5 mmol/L (190 mg/dL), or an LDL-C ≥4 mmol/L (160 mg/dL) with family history of premature CHD and/or high baseline cholesterol in one parent, make the phenotypic diagnosis. If a parent has a genetic defect, the LDL-C cut-off for the child is ≥3.5 mmol/L (130 mg/dL). We recommend cascade screening of families using a combined phenotypic and genotypic strategy. In children, testing is recommended from age 5 years, or earlier if homozygous FH is suspected. A healthy lifestyle and statin treatment (from age 8 to 10 years) are the cornerstones of management of heterozygous FH. Target LDL-C is <3.5 mmol/L (130 mg/dL) if >10 years, or ideally 50% reduction from baseline if 8–10 years, especially with very high LDL-C, elevated lipoprotein(a), a family history of premature CHD or other cardiovascular risk factors, balanced against the long-term risk of treatment side effects. Identifying FH early and optimally lowering LDL-C over the lifespan reduces cumulative LDL-C burden and offers health and socioeconomic benefits. To drive policy change for timely detection and management, we call for further studies in the young. Increased awareness, early identification, and optimal treatment from childhood are critical to adding decades of healthy life for children and adolescents with FH.


Atherosclerosis | 2012

Homozygous familial hypercholesterolemia: Current perspectives on diagnosis and treatment

Frederick J. Raal; Raul D. Santos

Homozygous familial hypercholesterolemia (HoFH) is an autosomal co-dominant disease resulting from mutations in both copies of the low-density lipoprotein receptor (LDLR) gene. Mutations in 3 other associated genes, proprotein convertase subtilisin/kexin type 9, apolipoprotein B (APOB), and, more rarely, the autosomal recessive hypercholesterolemia adaptor protein, may lead to a similar phenotype with varying severity. HoFH patients have aggressive cardiovascular disease that develops from birth due to severe LDLR defects, resulting, in turn, in excess production of Apo B-containing atherogenic lipoproteins (low-density lipoprotein [LDL] and lipoprotein(a)). The condition is characterized by exceptionally high LDL cholesterol levels, cutaneous and tendon xanthomas, and valvular and supravalvular stenosis, and accelerated atherosclerosis often manifests in the first 2 decades of life. Treatment typically involves lipid-modifying medical therapy as well as mechanical removal of plasma LDL by means of apheresis. Although statins have afforded survival into the third and fourth decades of life, further therapeutic advancements currently under investigation promise hope of further improvements in survival and improved quality of life. The purpose of this review is to provide current perspectives on diagnosis and therapy in an effort to encourage early recognition and treatment of this rare but severe disease.


The Lancet Diabetes & Endocrinology | 2014

The polygenic nature of hypertriglyceridaemia: implications for definition, diagnosis, and management

Robert A. Hegele; Henry N. Ginsberg; M. John Chapman; Børge G. Nordestgaard; Jan Albert Kuivenhoven; Maurizio Averna; Jan Borén; Eric Bruckert; Alberico L. Catapano; Olivier S. Descamps; G. Kees Hovingh; Steve E. Humphries; Petri T. Kovanen; Luis Masana; Päivi Pajukanta; Klaus G. Parhofer; Frederick J. Raal; Kausik K. Ray; Raul D. Santos; Anton F. H. Stalenhoef; Erik S.G. Stroes; Marja-Riitta Taskinen; Anne Tybjærg-Hansen; Gerald F. Watts; Olov Wiklund

Plasma triglyceride concentration is a biomarker for circulating triglyceride-rich lipoproteins and their metabolic remnants. Common mild-to-moderate hypertriglyceridaemia is typically multigenic, and results from the cumulative burden of common and rare variants in more than 30 genes, as quantified by genetic risk scores. Rare autosomal recessive monogenic hypertriglyceridaemia can result from large-effect mutations in six different genes. Hypertriglyceridaemia is exacerbated by non-genetic factors. On the basis of recent genetic data, we redefine the disorder into two states: severe (triglyceride concentration >10 mmol/L), which is more likely to have a monogenic cause; and mild-to-moderate (triglyceride concentration 2-10 mmol/L). Because of clustering of susceptibility alleles and secondary factors in families, biochemical screening and counselling for family members is essential, but routine genetic testing is not warranted. Treatment includes management of lifestyle and secondary factors, and pharmacotherapy. In severe hypertriglyceridaemia, intervention is indicated because of pancreatitis risk; in mild-to-moderate hypertriglyceridaemia, intervention can be indicated to prevent cardiovascular disease, dependent on triglyceride concentration, concomitant lipoprotein disturbances, and overall cardiovascular risk.


International Journal of Cardiology | 2014

Integrated guidance on the care of familial hypercholesterolaemia from the International FH Foundation

Gerald F. Watts; Samuel S. Gidding; Anthony S. Wierzbicki; Peter P. Toth; Rodrigo Alonso; W. Virgil Brown; Eric Bruckert; Joep C. Defesche; Khoo Kah Lin; Michael Livingston; Pedro Mata; Klaus G. Parhofer; Frederick J. Raal; Raul D. Santos; Eric J.G. Sijbrands; William Simpson; David R. Sullivan; Andrey V. Susekov; Brian Tomlinson; Albert Wiegman; Shizuya Yamashita; John J. P. Kastelein

Familial hypercholesterolaemia (FH) is a dominantly inherited disorder present from birth that markedly elevates plasma low-density lipoprotein (LDL) cholesterol and causes premature coronary heart disease. There are at least 20 million people with FH worldwide, but the majority remain undetected and current treatment is often suboptimal. To address this major gap in coronary prevention we present, from an international perspective, consensus-based guidance on the care of FH. The guidance was generated from seminars and workshops held at an international symposium. The recommendations focus on the detection, diagnosis, assessment and management of FH in adults and children, and set guidelines for clinical purposes. They also refer to best practice for cascade screening and risk notifying and testing families for FH, including use of genetic testing. Guidance on treatment is based on risk stratification, management of non-cholesterol risk factors, and safe and effective use of LDL lowering therapies. Recommendations are given on lipoprotein apheresis. The use of emerging therapies for FH is also foreshadowed. This international guidance acknowledges evidence gaps, but aims to make the best use of contemporary practice and technology to achieve the best outcomes for the care of FH. It should accordingly be employed to inform clinical judgement and be adjusted for country-specific and local health care needs and resources.

Collaboration


Dive into the Raul D. Santos's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Raquel Conceicao

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arthur Agatston

Baptist Hospital of Miami

View shared research outputs
Top Co-Authors

Avatar

Gerald F. Watts

University of Western Australia

View shared research outputs
Researchain Logo
Decentralizing Knowledge