Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Raul F. Medina is active.

Publication


Featured researches published by Raul F. Medina.


Journal of Insect Science | 2011

Occurrence of Entomopathogenic Fungi from Agricultural and Natural Ecosystems in Saltillo, México, and their Virulence Towards Thrips and Whiteflies

Sergio R. Sánchez-Peña; Jorge San-Juan Lara; Raul F. Medina

Abstract Entomopathogenic fungi were collected from soil in four adjacent habitats (oak forest, agricultural soil, pine reforestation and chaparral habitat) in Saltillo, México using the insect bait method with Tenebrio molitor (L.) (Coleoptera: Tenebrionidae) larvae as bait. Overall, of the larvae exposed to soil, 171 (20%) hosted Beauveria bassiana (Balsamo) Vuillemin (Hypocreales: Cordycipitaceae), 25 (3%) hosted Metarhizium anisopliae (Metschnikoff) Sorokin (Hypocreales: Clavicipitaceae) and 1 (0.1%) hosted lsaria (=Paecilomyces) sp. (Hypocreales: Cordycipitaceae). B. bassiana was significantly more frequent on larvae exposed to oak forest soil. M. anisopliae was significantly more frequent on larvae exposed to agricultural soil. From the infected bait insects, 93 isolates of B. bassiana and 24 isolates of M. anisopliae were obtained. Strains were tested for their infectivity against Cuban laurel thrips, Gynaikothrips uzeli Zimmerman (Thysanoptera: Phlaeothripidae) and the greenhouse whitefly, Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae). B. bassiana isolates caused the highest mortality on thrips (some causing 88% mortality after 6 days); both fungal species caused similarly high mortality levels against whiteflies (75%) after 6 days. Large amounts of germplasm of entomopathogenic fungi, fundamentally B. bassiana and M. anisopliae, exist in the habitats sampled; pathogenicity varied among strains, and some strains possessed significant virulence. Soils in these habitats are reservoirs of diverse strains with potential for use in biocontrol.


Parasites & Vectors | 2014

Implications of climate change on the distribution of the tick vector Ixodes scapularis and risk for Lyme disease in the Texas-Mexico transboundary region.

Teresa P. Feria-Arroyo; Ivan Castro-Arellano; Guadalupe Gordillo-Pérez; Ana L Cavazos; Margarita Vargas-Sandoval; Abha Grover; Javier Torres; Raul F. Medina; Adalberto A. Pérez de León; Maria D. Esteve-Gassent

BackgroundDisease risk maps are important tools that help ascertain the likelihood of exposure to specific infectious agents. Understanding how climate change may affect the suitability of habitats for ticks will improve the accuracy of risk maps of tick-borne pathogen transmission in humans and domestic animal populations. Lyme disease (LD) is the most prevalent arthropod borne disease in the US and Europe. The bacterium Borrelia burgdorferi causes LD and it is transmitted to humans and other mammalian hosts through the bite of infected Ixodes ticks. LD risk maps in the transboundary region between the U.S. and Mexico are lacking. Moreover, none of the published studies that evaluated the effect of climate change in the spatial and temporal distribution of I. scapularis have focused on this region.MethodsThe area of study included Texas and a portion of northeast Mexico. This area is referred herein as the Texas-Mexico transboundary region. Tick samples were obtained from various vertebrate hosts in the region under study. Ticks identified as I. scapularis were processed to obtain DNA and to determine if they were infected with B. burgdorferi using PCR. A maximum entropy approach (MAXENT) was used to forecast the present and future (2050) distribution of B. burgdorferi-infected I. scapularis in the Texas-Mexico transboundary region by correlating geographic data with climatic variables.ResultsOf the 1235 tick samples collected, 109 were identified as I. scapularis. Infection with B. burgdorferi was detected in 45% of the I. scapularis ticks collected. The model presented here indicates a wide distribution for I. scapularis, with higher probability of occurrence along the Gulf of Mexico coast. Results of the modeling approach applied predict that habitat suitable for the distribution of I. scapularis in the Texas-Mexico transboundary region will remain relatively stable until 2050.ConclusionsThe Texas-Mexico transboundary region appears to be part of a continuum in the pathogenic landscape of LD. Forecasting based on climate trends provides a tool to adapt strategies in the near future to mitigate the impact of LD related to its distribution and risk for transmission to human populations in the Mexico-US transboundary region.


Entomologia Experimentalis Et Applicata | 2012

Population genetic structure of a specialist leafhopper on Zea: likely anthropogenic and ecological determinants of gene flow

Raul F. Medina; Steven M. Reyna; Julio S. Bernal

Corn leafhopper, Dalbulus maidis DeLong & Wolcott (Hemiptera: Cicadellidae), is a specialist herbivore on the genus Zea (Poaceae). The genera Dalbulus and Zea evolved in central Mexico. We sought to determine whether population genetic structuring is prevalent in corn leafhoppers inhabiting three of its host plants: (1) the highland species perennial teosinte (Zea diploperennis Iltis, Doebley & Guzman), (2) the mid‐ to lowland‐species Balsas teosinte (Zea mays ssp. parviglumis Iltis & Doebley), and (3) the ubiquitous domesticated maize (Zea mays ssp. mays L.). We used amplified fragment length polymorphisms to detect population structuring and genetic differentiation among corn leafhoppers on the three host plants in western‐central and ‐northern Mexico. Our results showed that corn leafhopper in Mexico is composed of at least two genetically discrete populations: an ‘Itinerant’ population associated with the annual hosts maize and Balsas teosinte, which appears to be widely distributed in Mexico, and a ‘Las Joyas’ population restricted to perennial teosinte and confined to a small mountain range (Sierra de Manantlán) in western‐central Mexico. Our results further suggested that population structuring is not due to isolation by distance or landscape features: Las Joyas and Itinerant corn leafhopper populations are genetically distinct despite their geographic proximity (ca. 4 km), whereas Itinerant corn leafhoppers separated by hundreds of kilometers (>800 km), mountain ranges, and a maritime corridor (Sea of Cortez) are not genetically distinct. Based on our results and on published ethnohistorical and archaeological data, we propose pre‐Columbian and modern scenarios, including likely ecological and anthropogenic influences, in which the observed genetic population structuring of corn leafhopper could have originated and could be maintained. Also, we hypothesize that after evolving on the lowland Balsas teosinte, corn leafhopper expanded its host range to include maize and then the highland perennial teosinte, following the domestication and spread of maize within the last 9 000 years.


Entomologia Experimentalis Et Applicata | 2013

Physical leaf defenses – altered by Zea life-history evolution, domestication, and breeding – mediate oviposition preference of a specialist leafhopper

Edwin Bellota; Raul F. Medina; Julio S. Bernal

Plant anti‐herbivore defenses are known to be affected by life‐history evolution, as well as by domestication and breeding in the case of crop species. A suite of plants from the maize genus Zea (Poaceae) and the specialist herbivore Dalbulus maidis (DeLong & Wolcott) (Hemiptera: Cicadellidae) were used to test the hypothesis that anti‐herbivore defenses are affected by plant life‐history evolution and human intervention through domestication and breeding for high yield. The suite of plants included a maize (Zea mays ssp. mays L.) commercial hybrid, a maize landrace, two populations of the annual Balsas teosinte (Z. mays ssp. parviglumis Iltis & Doebley), and perennial teosinte (Z. diploperennis Iltis, Doebley & Guzman). Leaf toughness, pubescence, and oviposition preference were compared among the suite of host plants looking for effects of transitions in life history (i.e., from perennial to annual life cycle), domestication (i.e., from wild annual to domesticated annual), and breeding (i.e., from landrace to hybrid maize) on defense against D. maidis. Results on leaf toughness suggested that the life‐history and domestication transitions weakened the plants resistance to penetration by the mouthparts and ovipositor of D. maidis, whereas results on pubescence suggested that this putative defense was strengthened with the breeding transition, contrary to expectations. Results on oviposition preference of D. maidis coincided with the expectation that life‐history and domestication transitions would lead to preference for Balsas teosinte over perennial teosinte, and of landrace maize over Balsas teosinte. Also, a negative correlation suggested that oviposition preference is significantly influenced by leaf toughness. Overall, the results suggested that Zea defenses against the specialist herbivore D. maidis were variably affected by plant life‐history evolution, domestication, and breeding, and that chemical defense may play a role in Zea defense against D. maidis because leaf toughness and pubescence only partially explained its host preferences.


Entomologia Experimentalis Et Applicata | 2005

Parasitism levels in Orgyia leucostigma feeding on two tree species: implications for the slow-growth- high-mortality hypothesis

Raul F. Medina; Pedro Barbosa; Kim Waddell

The slow‐growth‐high‐mortality hypothesis proposes that increased development time in arthropods feeding on suboptimal food may result in an increased vulnerability to natural enemies. We measured the development time of the forest caterpillar Orgyia leucostigma J.E. Smith (Lepidoptera: Lymantriidae: Orgyiini) on two of its host plants and used a 7‐year database on parasitism of this species to test the slow‐growth‐high‐mortality hypothesis. We found that female O. leucostigma developed faster when fed on willow (Salix nigra Marsh) than when fed on box elder (Acer negundo L.). However, only one of the parasitoids of the parasitoid community that attack these larvae followed the prediction of the slow‐growth‐high‐mortality hypothesis. Overall parasitism of O. leucostigma on willow was greater than in box elder, contradicting the slow‐growth‐high‐mortality hypothesis prediction. This is the first test of the hypothesis to consider parasitism by several species in the parasitoid community attacking a free‐feeding herbivore on two distantly related plant species.


PLOS ONE | 2014

Geographic Population Structure of the Sugarcane Borer, Diatraea saccharalis (F.) (Lepidoptera: Crambidae), in the Southern United States

Andrea L. Joyce; W. H. White; Gregg S. Nuessly; M. Alma Solis; Sonja J. Scheffer; Matthew L. Lewis; Raul F. Medina

The sugarcane borer moth, Diatraea saccharalis, is widespread throughout the Western Hemisphere, and is considered an introduced species in the southern United States. Although this moth has a wide distribution and is a pest of many crop plants including sugarcane, corn, sorghum and rice, it is considered one species. The objective was to investigate whether more than one introduction of D. saccharalis had occurred in the southern United States and whether any cryptic species were present. We field collected D. saccharalis in Texas, Louisiana and Florida in the southern United States. Two molecular markers, AFLPs and mitochondrial COI, were used to examine genetic variation among these regional populations and to compare the sequences with those available in GenBank and BOLD. We found geographic population structure in the southern United States which suggests two introductions and the presence of a previously unknown cryptic species. Management of D. saccharalis would likely benefit from further investigation of population genetics throughout the range of this species.


Entomologia Experimentalis Et Applicata | 2012

Geographic pattern of host-associated differentiation in the cotton fleahopper, Pseudatomoscelis seriatus

Apurba K. Barman; Megha N. Parajulee; Christopher G. Sansone; Charles P.-C. Suh; Raul F. Medina

Host‐associated differentiation (HAD) is the occurrence of genetically distinct, host‐associated lineages. Most of the cases of HAD in phytophagous insects have been documented in specialist insects inhabiting feral ecosystems or in generalist parthenogens in agroecosystems. Herein we report HAD in the cotton fleahopper, Pseudatomoscelis seriatus (Reuter) (Hemiptera: Miridae), a native, generalist, non‐parthenogenetic insect feeding on native wild hosts [horsemint, Monarda punctata L. (Lamiaceae) and woolly croton, Croton capitatus Michx. (Euphorbiaceae)] and on cotton [Gossypium hirsutum L. (Malvaceae)] in the USA. Examination of genome‐wide genetic variation with AFLP markers and Bayesian analyses of P. seriatus associated with three different host plant species at five locations in Texas revealed a geographic pattern of HAD. The geographic pattern of HAD corresponded with differences in precipitation among the locations studied. In three locations, two distinct lineages of P. seriatus were found in association with horsemint and cotton/woolly croton, whereas in two other locations, populations associated with the different host plants studied were panmictic. We suggest that precipitation differences among locations translate into heterogeneity in vegetation distribution, composition, and phenology, which altogether may contribute to the observed geographic pattern of HAD.


Entomologia Experimentalis Et Applicata | 2010

Geographic variation in male courtship acoustics and genetic divergence of populations of the Cotesia flavipes species complex

Andrea L. Joyce; Julio S. Bernal; S. B. Vinson; Randy E. Hunt; F. Schulthess; Raul F. Medina

Courtship behaviors of insect populations can vary across the range of a species. Populations exhibiting divergent courtship behavior may indicate genetic divergence or cryptic species. Courtship acoustic signals produced by male wing fanning and genetic structure (using amplified fragment length polymorphisms) were examined for seven allopatric populations of the Cotesia flavipes (Hymenoptera: Braconidae) species complex, using four C. sesamiae (Cameron) and three C. flavipes Cameron populations. Members of this species complex parasitize lepidopteran pests in gramineous crops including sugarcane, maize, and rice. Significant variation was detected in courtship acoustic signals and genetic structure among populations of both species. For C. sesamiae, courtship acoustic signals varied more between populations of two biotypes that were collected near an area of sympatry. The two biotypes of C. sesamiae were also genetically divergent. For C. flavipes, significant differences in acoustic signals and genetic structure occurred among allopatric populations; these differences support the recent designation of one population as a new species. Courtship acoustics play a role in reproductive isolation in this species complex, and are likely used in conjunction with chemical signals. Ecological factors such as host range and host plant use may also influence the divergence of both courtship acoustic signals and genetic structure among populations in the C. flavipes complex.


Entomologia Experimentalis Et Applicata | 2012

Host‐associated genetic differentiation in pecan leaf phylloxera

Aaron M. Dickey; Raul F. Medina

Host‐associated differentiation (HAD) is the formation of genetically distinct host‐associated populations. One of the genotypic signatures of HAD is that populations exhibit stronger differentiation by host‐plant species than by geographic isolation. HAD, as a mechanism promoting ecological speciation, has been invoked to explain phytophagous insect diversity. Two traits proposed to promote HAD are endophagy and parthenogenesis. Using amplified fragment length polymorphisms (AFLPs), we tested for the presence of HAD in pecan leaf phylloxera, Phylloxera notabilis Pergande (Hemiptera: Phylloxeridae), an endophagous, gall inducing, and cyclically parthenogenetic insect on sympatric pecan and water hickory at a geographic mesoscale. This species shows strong HAD. Whereas the effect of collecting site was significant, accounting for 7.3% of molecular variation, host‐plant species identity accounted for 63.5%. In addition, a choice test indicated that pecan leaf phylloxera originating from water hickory showed weak but significant preference for leaflets of the natal host, whereas pecan leaf phylloxera originating from pecan did not. This is the first such study of a species of arboreal Phylloxeridae, a poorly known insect group. This is also the first endophage and the second parthenogen shared by these two hickory species to show evidence of HAD. This hickory system could be a good parthenogen‐rich counterpoint to the goldenrod system in the study of HAD in insect communities.


Environmental Entomology | 2002

Predation of Small and Large Orgyia leucostigma (J. E. Smith) (Lepidoptera: Lymantriidae) Larvae by Vertebrate and Invertebrate Predators

Raul F. Medina; Pedro Barbosa

Abstract In this study, we asked whether different predatory assemblages (i.e., flying invertebrates, crawling invertebrates, and birds, representing vertebrate predators) in a temperate forest impose significantly different levels of predation on larvae of Orgyia leucostigma (J. E. Smith), the whitemarked tussock moth and also whether the size of whitemarked tussock moth larvae influence invertebrate and vertebrate predation. Predation by species in vertebrate and invertebrate predator assemblages on two sizes of O. leucostigma larvae on box elder, Acer negundo (L.) (Sapindales: Aceraceae) was compared using exclusion cages. Cages covered with mesh of different sizes and sticky barriers were used to exclude different kinds of predators (i.e., birds, flying invertebrates, and crawling invertebrates). Five small and five large larvae were placed on box elder saplings. Predation by birds was the greatest source of mortality of large larvae when compared with that caused by flying and crawling invertebrates. Predation played an insignificant role in the disappearance of small larvae whose disappearance was associated with their dispersal behavior.

Collaboration


Dive into the Raul F. Medina's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge