Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Raul Mostoslavsky is active.

Publication


Featured researches published by Raul Mostoslavsky.


Cell | 2006

Genomic instability and aging-like phenotype in the absence of mammalian SIRT6

Raul Mostoslavsky; Katrin F. Chua; David B. Lombard; Wendy W. Pang; Miriam R. Fischer; Lionel Gellon; Pingfang Liu; Gustavo Mostoslavsky; Sonia Franco; Michael M. Murphy; Kevin D. Mills; Parin Patel; Joyce T. Hsu; Andrew L. Hong; Ethan Ford; Hwei Ling Cheng; Caitlin Kennedy; Nomeli P. Nunez; Roderick T. Bronson; David Frendewey; Wojtek Auerbach; David M. Valenzuela; Margaret Karow; Michael O. Hottiger; Stephen D. Hursting; J. Carl Barrett; Leonard Guarente; Richard C. Mulligan; Bruce Demple; George D. Yancopoulos

The Sir2 histone deacetylase functions as a chromatin silencer to regulate recombination, genomic stability, and aging in budding yeast. Seven mammalian Sir2 homologs have been identified (SIRT1-SIRT7), and it has been speculated that some may have similar functions to Sir2. Here, we demonstrate that SIRT6 is a nuclear, chromatin-associated protein that promotes resistance to DNA damage and suppresses genomic instability in mouse cells, in association with a role in base excision repair (BER). SIRT6-deficient mice are small and at 2-3 weeks of age develop abnormalities that include profound lymphopenia, loss of subcutaneous fat, lordokyphosis, and severe metabolic defects, eventually dying at about 4 weeks. We conclude that one function of SIRT6 is to promote normal DNA repair, and that SIRT6 loss leads to abnormalities in mice that overlap with aging-associated degenerative processes.


Nature | 2009

Recent progress in the biology and physiology of sirtuins

Toren Finkel; Chu-Xia Deng; Raul Mostoslavsky

The sirtuins are a highly conserved family of NAD+-dependent enzymes that regulate lifespan in lower organisms. Recently, the mammalian sirtuins have been connected to an ever widening circle of activities that encompass cellular stress resistance, genomic stability, tumorigenesis and energy metabolism. Here we review the recent progress in sirtuin biology, the role these proteins have in various age-related diseases and the tantalizing notion that the activity of this family of enzymes somehow regulates how long we live.


The EMBO Journal | 2007

Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1α

Zachary Gerhart-Hines; Joseph T. Rodgers; Olivia Bare; Carles Lerin; Seung-Hee Kim; Raul Mostoslavsky; Frederick W. Alt; Zhidan Wu; Pere Puigserver

In mammals, maintenance of energy and nutrient homeostasis during food deprivation is accomplished through an increase in mitochondrial fatty acid oxidation in peripheral tissues. An important component that drives this cellular oxidative process is the transcriptional coactivator PGC‐1α. Here, we show that fasting induced PGC‐1α deacetylation in skeletal muscle and that SIRT1 deacetylation of PGC‐1α is required for activation of mitochondrial fatty acid oxidation genes. Moreover, expression of the acetyltransferase, GCN5, or the SIRT1 inhibitor, nicotinamide, induces PGC‐1α acetylation and decreases expression of PGC‐1α target genes in myotubes. Consistent with a switch from glucose to fatty acid oxidation that occurs in nutrient deprivation states, SIRT1 is required for induction and maintenance of fatty acid oxidation in response to low glucose concentrations. Thus, we have identified SIRT1 as a functional regulator of PGC‐1α that induces a metabolic gene transcription program of mitochondrial fatty acid oxidation. These results have implications for understanding selective nutrient adaptation and how it might impact lifespan or metabolic diseases such as obesity and diabetes.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice

Hwei-Ling Cheng; Raul Mostoslavsky; Shin'ichi Saito; John P. Manis; Yansong Gu; Parin Patel; Roderick T. Bronson; Ettore Appella; Frederick W. Alt; Katrin F. Chua

SIRT1 is a mammalian homolog of the Saccharomyces cerevisiae chromatin silencing factor Sir2. Dominant-negative and overexpression studies have implicated a role for SIRT1 in deacetylating the p53 tumor suppressor protein to dampen apoptotic and cellular senescence pathways. To elucidate SIRT1 function in normal cells, we used gene-targeted mutation to generate mice that express either a mutant SIRT1 protein that lacks part of the catalytic domain or has no detectable SIRT1 protein at all. Both types of SIRT1 mutant mice and cells had essentially the same phenotypes. SIRT1 mutant mice were small, and exhibited notable developmental defects of the retina and heart, and only infrequently survived postnatally. Moreover, SIRT1-deficient cells exhibited p53 hyperacetylation after DNA damage and increased ionizing radiation-induced thymocyte apoptosis. In SIRT1-deficient embryonic fibroblasts, however, p53 hyperacetylation after DNA damage was not accompanied by increased p21 protein induction or DNA damage sensitivity. Together, our observations provide direct evidence that endogenous SIRT1 protein regulates p53 acetylation and p53-dependent apoptosis, and show that the function of this enzyme is required for specific developmental processes.


Cell | 2008

SIRT1 Regulates Circadian Clock Gene Expression through PER2 Deacetylation

Gad Asher; David Gatfield; Markus Stratmann; Hans Reinke; Charna Dibner; Florian Kreppel; Raul Mostoslavsky; Frederick W. Alt; Ueli Schibler

The mammalian circadian timing system is composed of a central pacemaker in the suprachiasmatic nucleus of the brain that synchronizes countless subsidiary oscillators in peripheral tissues. The rhythm-generating mechanism is thought to rely on a feedback loop involving positively and negatively acting transcription factors. BMAL1 and CLOCK activate the expression of Period (Per) and Cryptochrome (Cry) genes, and once PER and CRY proteins accumulate to a critical level they form complexes with BMAL1-CLOCK heterodimers and thereby repress the transcription of their own genes. Here, we show that SIRT1, an NAD(+)-dependent protein deacetylase, is required for high-magnitude circadian transcription of several core clock genes, including Bmal1, Rorgamma, Per2, and Cry1. SIRT1 binds CLOCK-BMAL1 in a circadian manner and promotes the deacetylation and degradation of PER2. Given the NAD(+) dependence of SIRT1 deacetylase activity, it is likely that SIRT1 connects cellular metabolism to the circadian core clockwork circuitry.


Cell | 2006

SIRT4 Inhibits Glutamate Dehydrogenase and Opposes the Effects of Calorie Restriction in Pancreatic β Cells

Marcia C. Haigis; Raul Mostoslavsky; Kevin M. Haigis; Kamau Fahie; Danos C. Christodoulou; Andrew J. Murphy; David M. Valenzuela; George D. Yancopoulos; Margaret Karow; Gil Blander; Cynthia Wolberger; Tomas A. Prolla; Richard Weindruch; Frederick W. Alt; Leonard Guarente

Sir2 is an NAD-dependent deacetylase that connects metabolism with longevity in yeast, flies, and worms. Mammals have seven Sir2 homologs (SIRT1-7). We show that SIRT4 is a mitochondrial enzyme that uses NAD to ADP-ribosylate and downregulate glutamate dehydrogenase (GDH) activity. GDH is known to promote the metabolism of glutamate and glutamine, generating ATP, which promotes insulin secretion. Loss of SIRT4 in insulinoma cells activates GDH, thereby upregulating amino acid-stimulated insulin secretion. A similar effect is observed in pancreatic beta cells from mice deficient in SIRT4 or on the dietary regimen of calorie restriction (CR). Furthermore, GDH from SIRT4-deficient or CR mice is insensitive to phosphodiesterase, an enzyme that cleaves ADP-ribose, suggesting the absence of ADP-ribosylation. These results indicate that SIRT4 functions in beta cell mitochondria to repress the activity of GDH by ADP-ribosylation, thereby downregulating insulin secretion in response to amino acids, effects that are alleviated during CR.


Proceedings of the National Academy of Sciences of the United States of America | 2008

A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy

In Hye Lee; Liu Cao; Raul Mostoslavsky; David B. Lombard; Jie Liu; Nicholas E. Bruns; Maria Tsokos; Frederick W. Alt; Toren Finkel

We demonstrate a role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. In particular, transient increased expression of Sirt1 is sufficient to stimulate basal rates of autophagy. In addition, we show that Sirt1−/− mouse embryonic fibroblasts do not fully activate autophagy under starved conditions. Reconstitution with wild-type but not a deacetylase-inactive mutant of Sirt1 restores autophagy in these cells. We further demonstrate that Sirt1 can form a molecular complex with several essential components of the autophagy machinery, including autophagy genes (Atg)5, Atg7, and Atg8. In vitro, Sirt1 can, in an NAD-dependent fashion, directly deacetylate these components. The absence of Sirt1 leads to markedly elevated acetylation of proteins known to be required for autophagy in both cultured cells and in embryonic and neonatal tissues. Finally, we show that Sirt1−/− mice partially resemble Atg5−/− mice, including the accumulation of damaged organelles, disruption of energy homeostasis, and early perinatal mortality. Furthermore, the in utero delivery of the metabolic substrate pyruvate extends the survival of Sirt1−/− pups. These results suggest that the Sirt1 deacetylase is an important in vivo regulator of autophagy and provide a link between sirtuin function and the overall cellular response to limited nutrients.


Molecular and Cellular Biology | 2007

Mammalian Sir2 Homolog SIRT3 Regulates Global Mitochondrial Lysine Acetylation

David B. Lombard; Frederick W. Alt; Hwei Ling Cheng; Jakob Bunkenborg; Ryan S. Streeper; Raul Mostoslavsky; Jennifer Kim; George D. Yancopoulos; David M. Valenzuela; Andrew J. Murphy; Yinhua Yang; Yaohui Chen; Matthew D. Hirschey; Roderick T. Bronson; Marcia C. Haigis; Leonard Guarente; Robert V. Farese; Sherman M. Weissman; Eric Verdin; Bjoern Schwer

ABSTRACT Homologs of the Saccharomyces cerevisiae Sir2 protein, sirtuins, promote longevity in many organisms. Studies of the sirtuin SIRT3 have so far been limited to cell culture systems. Here, we investigate the localization and function of SIRT3 in vivo. We show that endogenous mouse SIRT3 is a soluble mitochondrial protein. To address the function and relevance of SIRT3 in the regulation of energy metabolism, we generated and phenotypically characterized SIRT3 knockout mice. SIRT3-deficient animals exhibit striking mitochondrial protein hyperacetylation, suggesting that SIRT3 is a major mitochondrial deacetylase. In contrast, no mitochondrial hyperacetylation was detectable in mice lacking the two other mitochondrial sirtuins, SIRT4 and SIRT5. Surprisingly, despite this biochemical phenotype, SIRT3-deficient mice are metabolically unremarkable under basal conditions and show normal adaptive thermogenesis, a process previously suggested to involve SIRT3. Overall, our results extend the recent finding of lysine acetylation of mitochondrial proteins and demonstrate that SIRT3 has evolved to control reversible lysine acetylation in this organelle.


Cell | 2005

DNA Repair, Genome Stability, and Aging

David B. Lombard; Katrin F. Chua; Raul Mostoslavsky; Sonia Franco; Monica Gostissa; Frederick W. Alt

Aging can be defined as progressive functional decline and increasing mortality over time. Here, we review evidence linking aging to nuclear DNA lesions: DNA damage accumulates with age, and DNA repair defects can cause phenotypes resembling premature aging. We discuss how cellular DNA damage responses may contribute to manifestations of aging. We review Sir2, a factor linking genomic stability, metabolism, and aging. We conclude with a general discussion of the role of mutant mice in aging research and avenues for future investigation.


Cell | 2010

The Histone Deacetylase Sirt6 Regulates Glucose Homeostasis via Hif1α

Lei Zhong; Agustina D'Urso; Debra Toiber; Carlos Sebastian; Ryan E. Henry; Douangsone D. Vadysirisack; Alexander R. Guimaraes; Brett Marinelli; Jakob D. Wikstrom; Tomer Nir; Clary B. Clish; Bhavapriya Vaitheesvaran; Othon Iliopoulos; Irwin J. Kurland; Yuval Dor; Ralph Weissleder; Orian S. Shirihai; Leif W. Ellisen; Joaquín M. Espinosa; Raul Mostoslavsky

SIRT6 is a member of a highly conserved family of NAD(+)-dependent deacetylases with various roles in metabolism, stress resistance, and life span. SIRT6-deficient mice develop normally but succumb to a lethal hypoglycemia early in life; however, the mechanism underlying this hypoglycemia remained unclear. Here, we demonstrate that SIRT6 functions as a histone H3K9 deacetylase to control the expression of multiple glycolytic genes. Specifically, SIRT6 appears to function as a corepressor of the transcription factor Hif1alpha, a critical regulator of nutrient stress responses. Consistent with this notion, SIRT6-deficient cells exhibit increased Hif1alpha activity and show increased glucose uptake with upregulation of glycolysis and diminished mitochondrial respiration. Our studies uncover a role for the chromatin factor SIRT6 as a master regulator of glucose homeostasis and may provide the basis for novel therapeutic approaches against metabolic diseases, such as diabetes and obesity.

Collaboration


Dive into the Raul Mostoslavsky's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frederick W. Alt

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge