Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Raul Nicoli is active.

Publication


Featured researches published by Raul Nicoli.


Talanta | 2009

Coupling ultra high-pressure liquid chromatography with single quadrupole mass spectrometry for the analysis of a complex drug mixture.

Julie Schappler; Raul Nicoli; Dao T.-T. Nguyen; Serge Rudaz; Jean-Luc Veuthey; Davy Guillarme

The coupling of ultra high-pressure liquid chromatography with a single quadrupole mass spectrometer was investigated for the analysis of several cytochromes P450 (CYP450) substrates and respective metabolites. The effect of numerous operating parameters (e.g. mobile phase pH, flow rate, gradient length, MS acquisition mode, dwell time, polarity switching, etc.) on selectivity, sensitivity and acquisition rate was studied. It was demonstrated that basic pH conditions provided the best compromise in terms of sensitivity and chromatographic selectivity with both acidic and basic compounds. The optimal mobile phase flow rate for UHPLC-MS experiments should be comprised between 300 and 600 microL/min for 2.1mm ID columns, while a higher flow rate generated up to 3-fold loss in sensitivity. It was also demonstrated that the fast polarity switching mode represented a valuable tool to improve throughput, maintaining acceptable performance. Finally, limits of detection were included in the range [1-50 ng/mL] in positive ionization mode and [50-250 ng/mL] in negative ionization mode, for investigated compounds.


Analytica Chimica Acta | 2015

Ultra high performance supercritical fluid chromatography coupled with tandem mass spectrometry for screening of doping agents. II: Analysis of biological samples

Lucie Nováková; Marco Rentsch; Alexandre Grand-Guillaume Perrenoud; Raul Nicoli; Martial Saugy; Jean-Luc Veuthey; Davy Guillarme

The potential and applicability of UHPSFC-MS/MS for anti-doping screening in urine samples were tested for the first time. For this purpose, a group of 110 doping agents with diverse physicochemical properties was analyzed using two separation techniques, namely UHPLC-MS/MS and UHPSFC-MS/MS in both ESI+ and ESI- modes. The two approaches were compared in terms of selectivity, sensitivity, linearity and matrix effects. As expected, very diverse retentions and selectivities were obtained in UHPLC and UHPSFC, proving a good complementarity of these analytical strategies. In both conditions, acceptable peak shapes and MS detection capabilities were obtained within 7 min analysis time, enabling the application of these two methods for screening purposes. Method sensitivity was found comparable for 46% of tested compounds, while higher sensitivity was observed for 21% of tested compounds in UHPLC-MS/MS and for 32% in UHPSFC-MS/MS. The latter demonstrated a lower susceptibility to matrix effects, which were mostly observed as signal suppression. In the case of UHPLC-MS/MS, more serious matrix effects were observed, leading typically to signal enhancement and the matrix effect was also concentration dependent, i.e., more significant matrix effects occurred at the lowest concentrations.


Analytica Chimica Acta | 2015

Ultra high performance supercritical fluid chromatography coupled with tandem mass spectrometry for screening of doping agents. I: Investigation of mobile phase and MS conditions

Lucie Nováková; Alexandre Grand-Guillaume Perrenoud; Raul Nicoli; Martial Saugy; Jean-Luc Veuthey; Davy Guillarme

The conditions for the analysis of selected doping substances by UHPSFC-MS/MS were optimized to ensure suitable peak shapes and maximized MS responses. A representative mixture of 31 acidic and basic doping agents was analyzed, in both ESI+ and ESI- modes. The best compromise for all compounds in terms of MS sensitivity and chromatographic performance was obtained when adding 2% water and 10mM ammonium formate in the CO2/MeOH mobile phase. Beside mobile phase, the nature of the make-up solvent added for interfacing UHPSFC with MS was also evaluated. Ethanol was found to be the best candidate as it was able to compensate for the negative effect of 2% water addition in ESI- mode and provided a suitable MS response for all doping agents. Sensitivity of the optimized UHPSFC-MS/MS method was finally assessed and compared to the results obtained in conventional UHPLC-MS/MS. Sensitivity was improved by 5-100-fold in UHPSFC-MS/MS vs. UHPLC-MS/MS for 56% of compounds, while only one compound (bumetanide) offered a significantly higher MS response (4-fold) under UHPLC-MS/MS conditions. In the second paper of this series, the optimal conditions for UHPSFC-MS/MS analysis will be employed to screen >100 doping agents in urine matrix and results will be compared to those obtained by conventional UHPLC-MS/MS.


The Journal of Clinical Endocrinology and Metabolism | 2014

Serum androgen levels in elite female athletes.

Stéphane Bermon; Pierre Yves Garnier; Angelica Lindén Hirschberg; Neil Robinson; Sylvain Giraud; Raul Nicoli; Norbert Baume; Martial Saugy; P. Fénichel; Stephen J. Bruce; Hugues Henry; Gabriel Dollé; Martin Ritzén

OBJECTIVE Prior to the implementation of the blood steroidal module of the Athlete Biological Passport, we measured the serum androgen levels among a large population of high-level female athletes as well as the prevalence of biochemical hyperandrogenism and some disorders of sex development (DSD). METHODS AND RESULTS In 849 elite female athletes, serum T, dehydroepiandrosterone sulphate, androstenedione, SHBG, and gonadotrophins were measured by liquid chromatography-mass spectrometry high resolution or immunoassay. Free T was calculated. The sampling hour, age, and type of athletic event only had a small influence on T concentration, whereas ethnicity had not. Among the 85.5% that did not use oral contraceptives, 168 of 717 athletes were oligo- or amenorrhoic. The oral contraceptive users showed the lowest serum androgen and gonadotrophin and the highest SHBG concentrations. After having removed five doped athletes and five DSD women from our population, median T and free T values were close to those reported in sedentary young women. The 99th percentile for T concentration was calculated at 3.08 nmol/L, which is below the 10 nmol/L threshold used for competition eligibility of hyperandrogenic women with normal androgen sensitivity. Prevalence of hyperandrogenic 46 XY DSD in our athletic population is approximately 7 per 1000, which is 140 times higher than expected in the general population. CONCLUSION This is the first study to establish normative serum androgens values in elite female athletes, while taking into account the possible influence of menstrual status, oral contraceptive use, type of athletic event, and ethnicity. These findings should help to develop the blood steroidal module of the Athlete Biological Passport and to refine more evidence-based fair policies and recommendations concerning hyperandrogenism in female athletes.


Journal of Pharmaceutical and Biomedical Analysis | 2008

Trypsin immobilization on three monolithic disks for on-line protein digestion

Raul Nicoli; Nicolas Gaud; Cinzia Stella; Serge Rudaz; Jean-Luc Veuthey

The preparation and characterization of three trypsin-based monolithic immobilized enzyme reactors (IMERs) developed to perform rapid on-line protein digestion and peptide mass fingerprinting (PMF) are described. Trypsin (EC 3.4.21.4) was covalently immobilized on epoxy, carbonyldiimidazole (CDI) and ethylenediamine (EDA) Convective Interaction Media (CIM) monolithic disks. The amount of immobilized enzyme, determined by spectrophotometric measurements at 280nm, was comprised between 0.9 and 1.5mg per disk. Apparent kinetic parameters Km* and Vmax*, as well as apparent immobilized trypsin BAEE-units, were estimated in flow-through conditions using N-alpha-benzoyl-L-arginine ethyl ester (BAEE) as a low molecular mass substrate. The on-line digestion of five proteins (cytochrome c, myoglobin, alpha1-acid glycoprotein, ovalbumin and albumin) was evaluated by inserting the IMERs into a liquid chromatography system coupled to an electrospray ionization ion-trap mass spectrometer (LC-ESI-MS/MS) through a switching valve. Results were compared to the in-solution digestion in terms of obtained scores, number of matched queries and sequence coverages. The most efficient IMER was obtained by immobilizing trypsin on a CIM EDA disk previously derivatized with glutaraldehyde, as a spacer moiety. The proteins were recognized by the database with satisfactory sequence coverage using a digestion time of only 5min. The repeatability of the digestion (R.S.D. of 5.4% on consecutive injections of myoglobin 12microM) and the long-term stability of this IMER were satisfactory since no loss of activity was observed after 250 injections.


Journal of Chromatography A | 2008

Development of immobilized enzyme reactors based on human recombinant cytochrome P450 enzymes for phase I drug metabolism studies.

Raul Nicoli; Manuela Bartolini; Serge Rudaz; Vincenza Andrisano; Jean-Luc Veuthey

Two cytochrome P450 (CYP)-based immobilized enzyme reactors (IMERs) were developed to perform automated on-line phase I drug metabolism studies. For this purpose, biotinylated recombinant CYP2D6 or CYP3A4 reconstituted systems were anchored to the surface of two monolithic mini-columns (2 mm x 6 mm I.D.), which had been covalently grafted with NeutrAvidin. After optimization of immobilization conditions, the obtained IMERs were integrated on-line into a LC hyphenated to an electrospray ionization MS/MS system. Studies with probe substrates and a known competitive inhibitor were performed, showing the potential of CYP-based IMERs in drug metabolism. In the optimized conditions, ca. 15 experiments were carried out with each bioreactor.


Journal of Chromatography A | 2013

Quantification of clenbuterol at trace level in human urine by ultra-high pressure liquid chromatography-tandem mass spectrometry.

Raul Nicoli; Michael Petrou; Flavia Badoud; Jiri Dvorak; Martial Saugy; Norbert Baume

Clenbuterol is a β2 agonist agent with anabolic properties given by the increase in the muscular mass in parallel to the decrease of the body fat. For this reason, the use of clenbuterol is forbidden by the World Anti-Doping Agency (WADA) in the practice of sport. This compound is of particular interest for anti-doping authorities and WADA-accredited laboratories due to the recent reporting of risk of unintentional doping following the eating of meat contaminated with traces of clenbuterol in some countries. In this work, the development and the validation of an ultra-high pressure liquid chromatography coupled to electrospray ionization tandem mass spectrometry (UHPLC-ESI-MS/MS) method for the quantification of clenbuterol in human urine is described. The analyte was extracted from urine samples by liquid-liquid extraction (LLE) in basic conditions using tert butyl-methyl ether (TBME) and analyzed by UHPLC-MS/MS with a linear gradient of acetonitrile in 9min only. The simple and rapid method presented here was validated in compliance with authority guidelines and showed a limit of quantification at 5pg/mL and a linearity range from 5pg/mL to 300pg/mL. Good trueness (85.8-105%), repeatability (5.7-10.6% RSD) and intermediate precision (5.9-14.9% RSD) results were obtained. The method was then applied to real samples from eighteen volunteers collecting urines after single oral doses administration (1, 5 and 10μg) of clenbuterol-enriched yogurts.


Journal of Chromatography A | 2009

Trypsin immobilization on an ethylenediamine-based monolithic minidisk for rapid on-line peptide mass fingerprinting studies

Raul Nicoli; Serge Rudaz; Cinzia Stella; Jean-Luc Veuthey

The aim of this work was to develop a trypsin-based micro-immobilized enzyme reactor prepared on a monolithic ethylenediamine BIA Separations CIM (convective interaction media) minidisk. The micro-immobilized enzyme reactor (IMER) was integrated in a liquid chromatography system hyphenated to electrospray ionization tandem mass spectrometry to carry out on-line protein digestion and identification. The performance of this IMER was compared with that obtained using a previously developed bioreactor prepared on a conventional CIM ethylenediamine disk and with that of the commercially available Poroszyme immobilized trypsin cartridge. In this work, we showed how different proteins were identified with good recoveries using a digestion time of 10 min only.


Journal of Chromatography A | 2016

Liquid chromatography and supercritical fluid chromatography as alternative techniques to gas chromatography for the rapid screening of anabolic agents in urine.

Vincent Desfontaine; Lucie Nováková; Federico Ponzetto; Raul Nicoli; Martial Saugy; Jean-Luc Veuthey; Davy Guillarme

This work describes the development of two methods involving supported liquid extraction (SLE) sample treatment followed by ultra-high performance liquid chromatography or ultra-high performance supercritical fluid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS and UHPSFC-MS/MS) for the screening of 43 anabolic agents in human urine. After evaluating different stationary phases, a polar-embedded C18 and a diol columns were selected for UHPLC-MS/MS and UHPSFC-MS/MS, respectively. Sample preparation, mobile phases and MS conditions were also finely tuned to achieve highest selectivity, chromatographic resolution and sensitivity. Then, the performance of these two methods was compared to the reference routine procedure for steroid analyses in anti-doping laboratories, which combines liquid-liquid extraction (LLE) followed by gas chromatography coupled to tandem mass spectrometry (GC-MS/MS). For this purpose, urine samples spiked with the compounds of interest at five different concentrations were analyzed using the three analytical platforms. The retention and selectivity of the three techniques were very different, ensuring a good complementarity. However, the two new methods displayed numerous advantages. The overall procedure was much faster thanks to high throughput SLE sample treatment using 48-well plates and faster chromatographic analysis. Moreover, the highest sensitivity was attained using UHPLC-MS/MS with 98% of the doping agents detected at the lowest concentration level (0.1ng/mL), against 76% for UHPSFC-MS/MS and only 14% for GC-MS/MS. Finally, the weakest matrix effects were obtained with UHPSFC-MS/MS with 76% of the analytes displaying relative matrix effect between -20 and 20%, while the GC-MS/MS reference method displayed very strong matrix effects (over 100%) for all of the anabolic agents.


Analytica Chimica Acta | 2016

Fast and sensitive supercritical fluid chromatography – tandem mass spectrometry multi-class screening method for the determination of doping agents in urine

Lucie Nováková; Vincent Desfontaine; Federico Ponzetto; Raul Nicoli; Martial Saugy; Jean-Luc Veuthey; Davy Guillarme

This study shows the possibility offered by modern ultra-high performance supercritical fluid chromatography combined with tandem mass spectrometry in doping control analysis. A high throughput screening method was developed for 100 substances belonging to the challenging classes of anabolic agents, hormones and metabolic modulators, synthetic cannabinoids and glucocorticoids, which should be detected at low concentrations in urine. To selectively extract these doping agents from urine, a supported liquid extraction procedure was implemented in a 48-well plate format. At the tested concentration levels ranging from 0.5 to 5 ng/mL, the recoveries were better than 70% for 48-68% of the compounds and higher than 50% for 83-87% of the tested substances. Due to the numerous interferences related to isomers of steroids and ions produced by the loss of water in the electrospray source, the choice of SFC separation conditions was very challenging. After careful optimization, a Diol stationary phase was employed. The total analysis time for the screening assay was only 8 min, and interferences as well as susceptibility to matrix effect (ME) were minimized. With the developed method, about 70% of the compounds had relative ME within the range ±20%, at a concentration of 1 and 5 ng/mL. Finally, limits of detection achieved with the above-described strategy including 5-fold preconcentration were below 0.1 ng/mL for the majority of the tested compounds. Therefore, LODs were systematically better than the minimum required performance levels established by the World anti-doping agency, except for very few metabolites.

Collaboration


Dive into the Raul Nicoli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Serge Rudaz

University of Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge