Raveendra Anangi
University of Queensland
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Raveendra Anangi.
Amino Acids | 2011
Irina Vetter; Jasmine L. Davis; Lachlan D. Rash; Raveendra Anangi; Mehdi Mobli; Paul F. Alewood; Richard J. Lewis; Glenn F. King
The remarkable potency and pharmacological diversity of animal venoms has made them an increasingly valuable source of lead molecules for drug and insecticide discovery. Nevertheless, most of the chemical diversity encoded within these venoms remains uncharacterized, despite decades of research, in part because of the small quantities of venom available. However, recent advances in the miniaturization of bioassays and improvements in the sensitivity of mass spectrometry and NMR spectroscopy have allowed unprecedented access to the molecular diversity of animal venoms. Here, we discuss these technological developments in the context of establishing a high-throughput pipeline for venoms-based drug discovery.
Journal of Medicinal Chemistry | 2014
Jonas Jensen; Ben Cristofori-Armstrong; Raveendra Anangi; K. J. Rosengren; Carus Ho Yee Lau; Mehdi Mobli; Andreas Brust; Paul F. Alewood; Glenn F. King; Lachlan D. Rash
The sea anemone peptide APETx2 is a potent and selective blocker of acid-sensing ion channel 3 (ASIC3). APETx2 is analgesic in a variety of rodent pain models, but the lack of knowledge of its pharmacophore and binding site on ASIC3 has impeded development of improved analogues. Here we present a detailed structure-activity relationship study of APETx2. Determination of a high-resolution structure of APETx2 combined with scanning mutagenesis revealed a cluster of aromatic and basic residues that mediate its interaction with ASIC3. We show that APETx2 also inhibits the off-target hERG channel by reducing the maximal current amplitude and shifting the voltage dependence of activation to more positive potentials. Electrophysiological screening of selected APETx2 mutants revealed partial overlap between the surfaces on APETx2 that mediate its interaction with ASIC3 and hERG. Characterization of the molecular basis of these interactions is an important first step toward the rational design of more selective APETx2 analogues.
Marine Drugs | 2012
Raveendra Anangi; Lachlan D. Rash; Mehdi Mobli; Glenn F. King
Acid-sensing ion channels (ASICs) are proton-gated sodium channels present in the central and peripheral nervous system of chordates. ASIC3 is highly expressed in sensory neurons and plays an important role in inflammatory and ischemic pain. Thus, specific inhibitors of ASIC3 have the potential to be developed as novel analgesics. APETx2, isolated from the sea anemone Anthopleura elegantissima, is the most potent and selective inhibitor of ASIC3-containing channels. However, the mechanism of action of APETx2 and the molecular basis for its interaction with ASIC3 is not known. In order to assist in characterizing the ASIC3-APETx2 interaction, we developed an efficient and cost-effective Escherichia coli periplasmic expression system for the production of APETx2. NMR studies on uniformly 13C/15N-labelled APETx2 produced in E. coli showed that the recombinant peptide adopts the native conformation. Recombinant APETx2 is equipotent with synthetic APETx2 at inhibiting ASIC3 channels expressed in Xenopus oocytes. Using this system we mutated Phe15 to Ala, which caused a profound loss of APETx2’s activity on ASIC3. These findings suggest that this expression system can be used to produce mutant versions of APETx2 in order to facilitate structure-activity relationship studies.
PLOS ONE | 2012
Raveendra Anangi; Shyny Koshy; Redwan Huq; Christine Beeton; Woei-Jer Chuang; Glenn F. King
The Kv1.3 voltage-gated potassium channel regulates membrane potential and calcium signaling in human effector memory T cells that are key mediators of autoimmune diseases such as multiple sclerosis, type 1 diabetes, and rheumatoid arthritis. Thus, subtype-specific Kv1.3 blockers have potential for treatment of autoimmune diseases. Several Kv1.3 channel blockers have been characterized from scorpion venom, all of which have an α/β scaffold stabilized by 3–4 intramolecular disulfide bridges. Chemical synthesis is commonly used for producing these disulfide-rich peptides but this approach is time consuming and not cost effective for production of mutants, fusion proteins, fluorescently tagged toxins, or isotopically labelled peptides for NMR studies. Recombinant production of Kv1.3 blockers in the cytoplasm of E. coli generally necessitates oxidative refolding of the peptides in order to form their native disulfide architecture. An alternative approach that avoids the need for refolding is expression of peptides in the periplasm of E. coli but this often produces low yields. Thus, we developed an efficient Pichia pastoris expression system for production of Kv1.3 blockers using margatoxin (MgTx) and agitoxin-2 (AgTx2) as prototypic examples. The Pichia system enabled these toxins to be obtained in high yield (12–18 mg/L). NMR experiments revealed that the recombinant toxins adopt their native fold without the need for refolding, and electrophysiological recordings demonstrated that they are almost equipotent with the native toxins in blocking KV1.3 (IC50 values of 201±39 pM and 97±3 pM for recombinant AgTx2 and MgTx, respectively). Furthermore, both recombinant toxins inhibited T-lymphocyte proliferation. A MgTx mutant in which the key pharmacophore residue K28 was mutated to alanine was ineffective at blocking KV1.3 and it failed to inhibit T-lymphocyte proliferation. Thus, the approach described here provides an efficient method of producing toxin mutants with a view to engineering Kv1.3 blockers with therapeutic potential.
Bioinformatics | 2018
Sandy S. Pineda; Pierre-Alain Chaumeil; Anne Kunert; Quentin Kaas; Mike W. C. Thang; Lien Le; Michael Nuhn; Volker Herzig; Natalie J. Saez; Ben Cristofori-Armstrong; Raveendra Anangi; Sebastian Senff; Dominique Gorse; Glenn F. King
Summary: ArachnoServer is a manually curated database that consolidates information on the sequence, structure, function and pharmacology of spider‐venom toxins. Although spider venoms are complex chemical arsenals, the primary constituents are small disulfide‐bridged peptides that target neuronal ion channels and receptors. Due to their high potency and selectivity, these peptides have been developed as pharmacological tools, bioinsecticides and drug leads. A new version of ArachnoServer (v3.0) has been developed that includes a bioinformatics pipeline for automated detection and analysis of peptide toxin transcripts in assembled venom‐gland transcriptomes. ArachnoServer v3.0 was updated with the latest sequence, structure and functional data, the search‐by‐mass feature has been enhanced, and toxin cards provide additional information about each mature toxin. Availability and implementation: http://arachnoserver.org Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.
British Journal of Pharmacology | 2018
Jia Yu Peppermint Lee; Natalie J. Saez; Ben Cristofori-Armstrong; Raveendra Anangi; Glenn F. King; Maree T. Smith; Lachlan D. Rash
Acid‐sensing ion channels (ASICs) are primary acid sensors in mammals, with the ASIC1b and ASIC3 subtypes being involved in peripheral nociception. The antiprotozoal drug diminazene is a moderately potent ASIC inhibitor, but its analgesic activity has not been assessed.
Methods of Molecular Biology | 2017
Natalie J. Saez; Ben Cristofori-Armstrong; Raveendra Anangi; Glenn F. King
Recombinant expression of disulfide-reticulated peptides and proteins is often challenging. We describe a method that exploits the periplasmic disulfide-bond forming machinery of Escherichia coli and combines this with a cleavable, solubility-enhancing fusion tag to obtain higher yields of correctly folded target protein than is achievable via cytoplasmic expression. The protocols provided herein cover all aspects of this approach, from vector construction and transformation to purification of the cleaved target protein and subsequent quality control.
Frontiers in Plant Science | 2018
Suresha G. Shivalingamurthy; Raveendra Anangi; Sundaravelpandian Kalaipandian; Donna Glassop; Glenn F. King; Anne L. Rae
In sugarcane, invertase enzymes play a key role in sucrose accumulation and are also involved in futile reactions where sucrose is continuously degraded during the pre- and post-harvest period, thereby reducing sugar yield and recovery. Invertase inhibitor (INVINH) proteins play a key role in post-translation regulation of plant invertases through which sucrose hydrolysis is controlled. INVINH proteins are small (18 kDa) members of the pectin methylesterase inhibitor superfamily and they are moderately conserved across plants. In the present study, we identified two INVINH genes from sugarcane, ShINH1 and ShINH2. In silico characterization of the encoded proteins revealed 43% sequence identity at the amino acid level, confirming the non-allelic nature of the proteins. The presence of putative signal peptide and subcellular targeting sequences revealed that ShINH1 and ShINH2 likely have apoplasmic and vacuolar localization, respectively. Experimental visualization of ShINH1–GFP revealed that ShINHI is indeed exported to the apoplast. Differential tissue-specific and developmental expression of ShINH1 between leaf, stalk, flower and root suggest that it plays a role in controlling source-sink metabolic regulation during sucrose accumulation in sugarcane. ShINH1 is expressed at relatively high levels in leaves and stalk compared to flowers and roots, and expression decreases significantly toward internodal maturity during stalk development. ShINH1 is expressed at variable levels in flowers with no specific association to floral maturity. Production of recombinant ShINH1 enabled experimental validation of protein function under in vitro conditions. Recombinant ShINH1 potently inhibited acid invertase (IC50 22.5 nM), making it a candidate for controlling pre- and post-harvest deterioration of sucrose in sugarcane. Our results indicate that ShINH1 and ShINH2 are likely to play a regulatory role in sucrose accumulation and contribute to the improvement of sugar yield and recovery in sugarcane.
Biomolecular Nmr Assignments | 2018
Janeka Gartia; Ravi Pratap Barnwal; Raveendra Anangi; Ashok R. Giri; Glenn F. King; Kandala V. R. Chary
Helicoverpa species are polyphagous pests, with the larval stages causing major damage to economically valuable crops such as cotton, tomato, corn, sorghum, peas, sunflower, wheat and other pulses. Over the years, Helicoverpa armigera has developed resistance to most classes of chemical insecticides, and consequently it is now largely controlled on cotton plants via the use of Bt transgenic crops that express insecticidal Cry toxins which in-turn expedited resistance development in a number of pest species including H. armigera. In a hope to provide other eco-friendly alternatives solutions to counter the effect of the pest, people have identified a number of protease inhibitors (PIs) from the domesticated capsicum species Capsicum annuum, several of which potently inhibited H. armigera gut proteases and impeded growth of H. armigera larva. With a view to explore and enhance the specific nature or properties of these PIs on the mechanism of inhibition, structural and functional characterization of these PIs are inevitable. Towards this goal, we have carried out complete 1H, 13C and 15N resonance assignments of two of these PIs, identified as IRD7 and IRD12, using a suite of 2D and 3D multi-dimensional and multi-nuclear NMR experiments.
Toxicon | 2012
Julie K. Klint; Raveendra Anangi; Mehdi Mobli; Oliver Knapp; David J. Adams; Glenn F. King