Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ravi K. Kukkadapu is active.

Publication


Featured researches published by Ravi K. Kukkadapu.


Geochimica et Cosmochimica Acta | 2003

Secondary mineralization pathways induced by dissimilatory iron reduction of ferrihydrite under advective flow

Colleen M. Hansel; Shawn G. Benner; Jim Neiss; Alice Dohnalkova; Ravi K. Kukkadapu; Scott Fendorf

Iron (hydr)oxides not only serve as potent sorbents and repositories for nutrients and contaminants but also provide a terminal electron acceptor for microbial respiration. The microbial reduction of Fe (hydr)oxides and the subsequent secondary solid-phase transformations will, therefore, have a profound influence on the biogeochemical cycling of Fe as well as associated metals. Here we elucidate the pathways and mechanisms of secondary mineralization during dissimilatory iron reduction by a common iron-reducing bacterium, Shewanella putrefaciens (strain CN32), of 2-line ferrihydrite under advective flow conditions. Secondary mineralization of ferrihydrite occurs via a coupled, biotic-abiotic pathway primarily resulting in the production of magnetite and goethite with minor amounts of green rust. Operating mineralization pathways are driven by competing abiotic reactions of bacterially generated ferrous iron with the ferrihydrite surface. Subsequent to the initial sorption of ferrous iron on ferrihydrite, goethite (via dissolution/reprecipitation) and/or magnetite (via solid-state conversion) precipitation ensues resulting in the spatial coupling of both goethite and magnetite with the ferrihydrite surface. The distribution of goethite and magnetite within the column is dictated, in large part, by flow-induced ferrous Fe profiles. While goethite precipitation occurs over a large Fe(II) concentration range, magnetite accumulation is only observed at concentrations exceeding 0.3 mmol/L (equivalent to 0.5 mmol Fe[II]/g ferrihydrite) following 16 d of reaction. Consequently, transport-regulated ferrous Fe profiles result in a progression of magnetite levels downgradient within the column. Declining microbial reduction over time results in lower Fe(II) concentrations and a subsequent shift in magnetite precipitation mechanisms from nucleation to crystal growth. While the initial precipitation rate of goethite exceeds that of magnetite, continued growth is inhibited by magnetite formation, potentially a result of lower Fe(III) activity. Conversely, the presence of lower initial Fe(II) concentrations followed by higher concentrations promotes goethite accumulation and inhibits magnetite precipitation even when Fe(II) concentrations later increase, thus revealing the importance of both the rate of Fe(II) generation and flow-induced Fe(II) profiles. As such, the operating secondary mineralization pathways following reductive dissolution of ferrihydrite at a given pH are governed principally by flow-regulated Fe(II) concentration, which drives mineral precipitation kinetics and selection of competing mineral pathways.


Geomicrobiology Journal | 2002

Biomineralization of Poorly Crystalline Fe(III) Oxides by Dissimilatory Metal Reducing Bacteria (DMRB)

John M. Zachara; Ravi K. Kukkadapu; James K. Fredrickson; Yuri A. Gorby; Steven C. Smith

Dissimilatory metal reducing bacteria (DMRB) catalyze the reduction of Fe(III) to Fe(II) in anoxic soils, sediments, and groundwater. Two-line ferrihydrite is a bioavailable Fe(III) oxide form that is exploited by DMRB as a terminal electron acceptor. A wide variety of biomineralization products result from the interaction of DMRB with 2-line ferrihydrite. Here we describe the state of knowledge on the biotransformation of synthetic 2-line ferrihydrite by laboratory cultures of DMRB using select published data and new experimental results. A facultative DMRB is emphasized ( Shewanella putrefaciens ) upon which most of this work has been performed. Key factors controlling the identity of the secondary mineral suite are evaluated including medium composition, electron donor and acceptor concentrations, ferrihydrite aging/recrystallization status, sorbed ions, and co-associated crystalline Fe(III) oxides. It is shown that crystalline ferric (goethite, hematite, lepidocrocite), ferrous (siderite, vivianite), and mixed valence (magnetite, green rust) iron solids are formed in anoxic, circumneutral DMRB incubations. Some products are well rationalized based on thermodynamic considerations, but others appear to result from kinetic pathways driven by ions that inhibit interfacial electron transfer or the precipitation of select phases. The primary factor controlling the nature of the secondary mineral suite appears to be the Fe(II) supply rate and magnitude, and its surface reaction with the residual oxide and other sorbed ions. The common observation of end-product mineral mixtures that are not at global equilibrium indicates that microenvironments surrounding respiring DMRB cells or the reaction-path trajectory (over Eh-pH space) may influence the identity of the final biomineralization suite.


Chemical Geology | 2000

Mineral transformations associated with the microbial reduction of magnetite

Hailiang Dong; James K. Fredrickson; David W. Kennedy; John M. Zachara; Ravi K. Kukkadapu; T. C. Onstott

Although dissimilatory iron reducing bacteria DIRB are capable of reducing a number of metals in oxides and soluble forms, the factors controlling the raterextent of magnetite reduction and the nature of the mineral products resulting from magnetite reduction are not well understood. This study was carried out to investigate mechanisms and biogeochemical processes occurring during magnetite reduction by the DIRB, Shewanella putrefaciens strains CN32 and MR-1. Reduction experiments were performed with biogenic and synthetic magnetite in well-defined solutions. Biogenic magnetite was . generated via microbial reduction of hydrous ferric oxide HFO . Biogenic magnetite in solutions buffered with either


Geochimica et Cosmochimica Acta | 2001

Dissimilatory bacterial reduction of Al-substituted goethite in subsurface sediments

Ravi K. Kukkadapu; John M. Zachara; Steven C. Smith; James K. Fredrickson; Chongxuan Liu

The microbiologic reduction of a 0.2 to 2.0 μm size fraction of an Atlantic coastal plain sediment (Eatontown) was investigated using a dissimilatory Fe(III)-reducing bacterium (Shewanella putrefaciens, strain CN32) to evaluate mineralogic controls on the rate and extent of Fe(III) reduction and the resulting distribution of biogenic Fe(II). Mossbauer spectroscopy and X-ray diffraction (XRD) were used to show that the sedimentary Fe(III) oxide was Al-substituted goethite (13–17% Al) that existed as 1- to 5-μm aggregates of indistinct morphology. Bioreduction experiments were performed in two buffers [HCO3−; 1,4-piperazinediethansulfonic acid (PIPES)] both without and with 2,6-anthraquinone disulfonate (AQDS) as an electron shuttle. The production of biogenic Fe(II) and the distribution of Al (aqueous and sorbed) were followed over time, as was the formation of Fe(II) biominerals and physical/chemical changes to the goethite. The extent of reduction was comparable in both buffers. The reducibility (rate and extent) was enhanced by AQDS; 9% of dithionite-citrate-bicarbonate (DCB) extractable Fe(III) was reduced without AQDS whereas 15% was reduced in the presence of AQDS. XRD and Mossbauer spectroscopy were used to monitor the disposition of biogenic Fe(II) and changes to the Al-goethite. Fe(II) biomineralization was not evident by XRD. Biomineralization was observed by Mossbauer when sorbed Fe(II) concentrations exceeded a threshold value. The biomineralization products displayed Mossbauer spectra consistent with siderite FeCO3 (HCO3− buffer only) and green rust [Fe(6-x)IIFexIII(OH)12]x+[(A2−)x/2.yH2O]x−. Adsorption of biogenic Fe(II) to accessory mineral phases (e.g., kaolinite) and bacterial surfaces appeared to limit biomineralization. Al evolved during reduction was sorbed, and extractable Al increased with reduction. XRD analysis indicated that neither crystallite size or the Al content of the goethite was affected by bacterial reduction, i.e., Al release was congruent with Fe(II).


American Mineralogist | 2003

Transformation of 2-line ferrihydrite to 6-line ferrihydrite under oxic and anoxic conditions

Ravi K. Kukkadapu; John M. Zachara; James K. Fredrickson; Steven C. Smith; Alice Dohnalkova; Colleen K. Russell

Abstract Mineralogical transformations of 2-line ferrihydrite were studied under oxic and Fe3+-reducing conditions to establish the role, if any, of 6-line ferrihydrite (“well” organized ferrihydrite) in the reaction pathway and as a final product. In oxic experiments, concentrated suspensions (0.42 mol/L Fe3+ in 0.1 mol/L NaClO4) of freshly synthesized 2-line ferrihydrite, with and without 3% Ni2+, were aged at an initial pH = 7.2 (unbuffered and unadjusted) and 25 °C for more than three years. X-ray diffraction, transmission electron microscopy, and Mössbauer spectroscopy measurements were performed on the solids after different aging periods. The primary mineralogical products observed were 6-line ferrihydrite and goethite, with minor hematite. Aggregation and crystallization of the 2- line ferrihydrite liberated protons and depressed suspension pH, but coprecipitated Ni2+ retarded this process. The joint, interrelated effects of Ni and pH influenced both the extent of conversion of 2- line ferrihydrite and the identity of the major transformation products. Six-line ferrihydrite dominated in the Ni ferrihydrite suspension, whereas goethite dominated in the absence of Ni. Aggregation-induced crystallization of 2-line ferrihydrite particles seemed responsible for 6-line ferrihydrite formation. Mineralogical changes to Ni ferrihydrite under anaerobic conditions were investigated at circumneutral pH using the Fe3+-reducing bacterium Shewanella putrefaciens. Residual 6-line ferrihydrite dominated bioreduced samples that also contained goethite and magnetite. The conversion of 2-line ferrihydrite to 6-line ferrihydrite was considerably more rapid under anaerobic conditions. The sorption of biogenic Fe2+ apparently induced intra-aggregate transformation of 2-line ferrihydrite to 6-line ferrihydrite. Collectively, abiotic and biotic studies indicated that 6-line ferrihydrite can be a transformation product of 2-line ferrihydrite, especially when 2-line ferrihydrite is undergoing transformation to more stable hematite or magnetite.


Clays and Clay Minerals | 2004

COPPER SORPTION MECHANISMS ON SMECTITES

Daniel G. Strawn; Noel E. Palmer; Luca J. Furnare; Carmen Goodell; James E. Amonette; Ravi K. Kukkadapu

Due to the importance of clay minerals in metal sorption, many studies have attempted to derive mechanistic models that describe adsorption processes. These models often include several different types of adsorption sites, including permanent charge sites and silanol and aluminol functional groups on the edges of clay minerals. To provide a basis for development of adsorption models it is critical that molecular-level studies be done to characterize sorption processes. In this study we conducted X-ray absorption fine structure (XAFS) and electron paramagnetic resonance (EPR) spectroscopic experiments on copper (II) sorbed on smectite clays using suspension pH and ionic strength as variables. At low ionic strength, results suggest that Cu is sorbing in the interlayers and maintains its hydration sphere. At high ionic strength, Cu atoms are excluded from the interlayer and sorb primarily on the silanol and aluminol functional groups of the montmorillonite or beidellite structures. Interpretation of the XAFS and EPR spectroscopy results provides evidence that multinuclear complexes are forming. Fitting of extended X-ray absorption fine structure spectra revealed that the Cu-Cu atoms in the multinuclear complexes are 2.65 Å apart, and have coordination numbers near one. This structural information suggests that small Cu dimers are sorbing on the surface. These complexes are consistent with observed sorption on mica and amorphous silicon dioxide, yet are inconsistent with previous spectroscopic results for Cu sorption on montmorillonite. The results reported in this paper provide mechanistic data that will be valuable for modeling surface interactions of Cu with clay minerals, and predicting the geochemical cycling of Cu in the environment.


American Mineralogist | 2005

Ferrous Hydroxy Carbonate is a Stable Transformation Product of Biogenic Magnetite

Ravi K. Kukkadapu; John M. Zachara; James K. Fredrickson; David W. Kennedy; Alice Dohnalkova; David E. McCready

Abstract An ~1:1 mixture of ferrihydrite and nanocrystalline akaganeite (β-FeOOH; 10.15 nm) was incubated with Shewanella putrefaciens (strain CN32) under anoxic conditions with lactate as an electron donor and anthraquinone-2,6-disulfonate (AQDS) as an electron shuttle. The incubation was carried out in a 1,4-piperazinediethanesulfonic acid (PIPES)-buffered medium, without PO43- at circumneutral pH. Iron reduction was measured as a function of time (as determined by 0.5 N HCl extraction), and solids were characterized by X-ray diffraction (XRD), electron microscopy, and Mössbauer spectroscopy. The biogenic reduction of Fe3+was rapid; with 60% of the total Fe (FeTOT) reduced in one day. Only an additional 10% of FeTOT was reduced over the next three years. A fine-grained (~10 nm), cation-excess (CE) magnetite with an Fe2+/FeTOT ratio of 0.5-0.6 was the sole biogenic product after one day of incubation. The CE magnetite was unstable and partially transformed to micrometer-sized ferrous hydroxy carbonate [FHC; Fe2(OH)2CO3(s)], a rosasite-type mineral, with time. Ferrous hydroxy carbonate dominated the mineral composition of the three year incubated sample. The Fe2+/FeTOT ratio of the residual CE magnetite after three years of incubation was lower than the day 1 sample and was close to that of the stoichiometric magnetite (0.33). To the best of our knowledge, this is the first report of biogenic FHC, and was only reported twice in literature but in a very different context. Ferrous hydroxy carbonate appeared to form by slow reaction of microbially produced carbonate with Fe2+-excess magnetite. The FHC may be an overlooked mineral phase that explains the infrequent occurrence of fine-grained, biogenic magnetite in anoxic sediments.


Environmental Science & Technology | 2009

Uranium in Framboidal Pyrite from a Naturally Bioreduced Alluvial Sediment

Nikolla P. Qafoku; Ravi K. Kukkadapu; James P. McKinley; Bruce W. Arey; Shelly D. Kelly; Chongmin Wang; Charles T. Resch; Philip E. Long

Samples of a naturally bioreduced, U-contaminated alluvial sediment were characterized with various microscopic and spectroscopic techniques and wet chemical extraction methods. The objective was to investigate U association and interaction with minerals of the sediment. Bioreduced sediment comprises approximately 10% of an alluvial aquifer adjacent to the Colorado River, in Rifle, CO, that was the site of a former U milling operation. Past and ongoing research has demonstrated that bioreduced sediment is elevated in solid-associated U, total organic carbon, and acid-volatile sulfide, and depleted in bioavailable Fe(III) confirming that sulfate and Fe(III) reduction have occurred naturally in the sediment. SEM/EDS analyses demonstrated that framboidal pyrites (FeS(2)) of different sizes ( approximately 10-20 microm in diameter), and of various microcrystal morphology, degree of surface weathering, and internal porosity were abundant in the <53 microm fraction (silt + clay) of the sediment and absent in adjacent sediments that were not bioreduced. SEM-EMPA, XRF, EXAFS, and XANES measurements showed elevated U was present in framboidal pyrite as both U(VI) and U(IV). This result indicates that U may be sequestered in situ under conditions of microbially driven sulfate reduction and pyrite formation. Conversely, such pyrites in alluvial sediments provide a long-term source of U under conditions of slow oxidation, contributing to the persistence of U of some U plumes. These results may also help in developing remedial measures for U-contaminated aquifers.


Biodegradation | 2003

Influence of Electron Donor/Acceptor Concentrations on Hydrous Ferric Oxide (HFO) Bioreduction

James K. Fredrickson; Sreenivas Kota; Ravi K. Kukkadapu; Chongxuan Liu; John M. Zachara

Dissimilatory metal-reducing bacteria (DMRB) facilitate the reduction of Feand Mn oxides in anoxic soils and sediments and play an important role inthe cycling of these metals and other elements such as carbon in aqueousenvironments. Previous studies investigating the reduction of Fe(III) oxidesby DMRB focused on reactions under constant initial electron donor (lactate)and electron acceptor (Fe oxide) concentrations. Because the concentrationsof these reactants can vary greatly in the environment and would be expectedto influence the rate and extent of oxide reduction, the influence of variableelectron acceptor and donor concentrations on hydrous ferric oxide (HFO)bioreduction was investigated. Batch experiments were conducted in pH 7 HCO3– buffered media using Shewanella putrefaciens strain CN32. In general, the rate of Fe(III) reduction decreased with increasing HFO:lactateratios, resulting in a relatively greater proportion of crystalline Fe(III) oxidesof relatively low availability for DMRB. HFO was transformed to a variety ofcrystalline minerals including goethite, lepidocrocite, and siderite but was almostcompletely dissolved at high lactate to HFO ratios. These results indicate thatelectron donor and acceptor concentrations can greatly impact the bioreductionof HFO and the suite of Fe minerals formed as a result of reduction. The respirationdriven rate of Fe(II) formation from HFO is believed to be a primary factor governingthe array of ferrous and ferric iron phases formed during reduction.


Environmental Science & Technology | 2013

Abiotic reductive immobilization of U(VI) by biogenic mackinawite.

Harish Veeramani; Andreas C. Scheinost; Niven Monsegue; Nikolla P. Qafoku; Ravi K. Kukkadapu; Matthew Newville; Antonio Lanzirotti; Amy Pruden; Mitsuhiro Murayama; Michael F. Hochella

During subsurface bioremediation of uranium-contaminated sites, indigenous metal and sulfate-reducing bacteria may utilize a variety of electron acceptors, including ferric iron and sulfate that could lead to the formation of various biogenic minerals in situ. Sulfides, as well as structural and adsorbed Fe(II) associated with biogenic Fe(II)-sulfide phases, can potentially catalyze abiotic U(VI) reduction via direct electron transfer processes. In the present work, the propensity of biogenic mackinawite (Fe 1+x S, x = 0 to 0.11) to reduce U(VI) abiotically was investigated. The biogenic mackinawite produced by Shewanella putrefaciens strain CN32 was characterized by employing a suite of analytical techniques including TEM, SEM, XAS, and Mössbauer analyses. Nanoscale and bulk analyses (microscopic and spectroscopic techniques, respectively) of biogenic mackinawite after exposure to U(VI) indicate the formation of nanoparticulate UO2. This study suggests the relevance of sulfide-bearing biogenic minerals in mediating abiotic U(VI) reduction, an alternative pathway in addition to direct enzymatic U(VI) reduction.

Collaboration


Dive into the Ravi K. Kukkadapu's collaboration.

Top Co-Authors

Avatar

John M. Zachara

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nikolla P. Qafoku

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Bruce W. Arey

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Philip E. Long

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Steve M. Heald

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David W. Kennedy

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark H. Engelhard

Environmental Molecular Sciences Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge