Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ravi S. Radhakrishnan is active.

Publication


Featured researches published by Ravi S. Radhakrishnan.


Cell Metabolism | 2015

Browning of Subcutaneous White Adipose Tissue in Humans after Severe Adrenergic Stress

Labros S. Sidossis; Craig Porter; Manish Saraf; Elisabet Børsheim; Ravi S. Radhakrishnan; Tony Chao; Arham Ali; Maria Chondronikola; Ronald P. Mlcak; Celeste C. Finnerty; Hal K. Hawkins; Tracy Toliver-Kinsky; David N. Herndon

Since the presence of brown adipose tissue (BAT) was confirmed in adult humans, BAT has become a therapeutic target for obesity and insulin resistance. We examined whether human subcutaneous white adipose tissue (sWAT) can adopt a BAT-like phenotype using a clinical model of prolonged and severe adrenergic stress. sWAT samples were collected from severely burned and healthy individuals. A subset of burn victims were prospectively followed during their acute hospitalization. Browning of sWAT was determined by the presence of multilocular adipocytes, uncoupling protein 1 (UCP1), and increased mitochondrial density and respiratory capacity. Multilocular UCP1-positive adipocytes were found in sWAT samples from burn patients. UCP1 mRNA, mitochondrial density, and leak respiratory capacity in sWAT increased after burn trauma. Our data demonstrate that human sWAT can transform from an energy-storing to an energy-dissipating tissue, which opens new research avenues in our quest to prevent and treat obesity and its metabolic complications.


Shock | 2005

Resuscitation-induced intestinal edema decreases the stiffness and residual stress of the intestine

Ravi S. Radhakrishnan; Hasan Xue; Norman W. Weisbrodt; Frederick A. Moore; Steven J. Allen; G.A. Laine; Charles S. Cox

We have shown that acute edema impairs intestinal transit and we wanted to know whether this could be from changes in the physical characteristics of the intestine. Our hypothesis was that acute edema will change the physical characteristics of the intestine, which were measured by standardized engineering measures of elastic modulus, to determine stiffness and opening angle, and to determine residual stress. Rats were randomized to sham, mild edema (80 mL/ kg of normal saline resuscitation), and severe edema groups (80 mL/kg of normal saline resuscitation with intestinal venous hypertension). Segments of distal ileum were hung to a fixed point in a tissue bath and to a tensiometer and were stretched in increments of 1 mm, recording the new length and the corresponding force from the tensiometer to determine elastic modulus. Next, two transverse cuts were made yielding a 1- to 2-mm-thick ring-shaped segment of tissue and were then cut radially to open the ring. The opening angle was measured. Acute intestinal edema led to a decrease in transit, elastic modulus, and opening angle of the intestine in the absence of ischemic injury. Acute intestinal edema leads to a significant loss in stiffness and residual stress and is a plausible explanation for how acute edema impairs intestinal transit.


Journal of Surgical Research | 2014

Oridonin inhibits hepatic stellate cell proliferation and fibrogenesis

Fredrick J. Bohanon; Xiaofu Wang; Chunyong Ding; Ye Ding; Geetha L. Radhakrishnan; Cristiana Rastellini; Jia Zhou; Ravi S. Radhakrishnan

BACKGROUND Liver fibrosis is a common response to liver injury and, in severe cases, leads to cirrhosis. The hepatic stellate cells (HSCs) become activated after liver injury and play a significant role in fibrogenesis. The activated HSC is characterized by increased proliferation, overexpression of α smooth muscle actin, and excessive production of extracellular matrix (ECM) proteins. Oridonin, a naturally occurring diterpenoid, has been shown to induce apoptosis in liver and gastric cancer cells. However, its effects on the HSC are unknown. METHODS We tested the effects of oridonin on the activated human and rat HSC lines LX-2 and HSC-T6, and the human hepatocyte cell line C3A. Transforming growth factor β1 (TGF-β1) was used to stimulate LX-2 cells. RESULTS Oridonin significantly inhibited LX-2 and HSC-T6 proliferation. In contrast, oridonin had no antiproliferative effect on C3A cells at our tested range. Oridonin induced apoptosis and S-phase arrest in LX-2 cells. These findings were associated with an increase in p53, p21, p16, and cleaved Poly (ADP-ribose) Polymerase (PARP), and with a decrease in Cyclin-dependent kinase 4 (Cdk4). Oridonin markedly decreased expression of α smooth muscle actin and ECM protein type I collagen and fibronectin, blocked TGF-β1-induced Smad2/3 phosphorylation and type I collagen expression. CONCLUSIONS Oridonin induces apoptosis and cell cycle arrest involving the p53-p21 pathway in HSC and appears to be nontoxic to hepatocytes. In addition, oridonin suppressed endogenous and TGF-β1-induced ECM proteins. Thus, oridonin may act as a novel agent to prevent hepatic fibrosis.


Expert Opinion on Pharmacotherapy | 2012

Burns: an update on current pharmacotherapy

Yesenia Rojas; Celeste C. Finnerty; Ravi S. Radhakrishnan; David N. Herndon

Introduction: The worldwide occurrence of burn injuries remains high despite efforts to reduce injury incidence through public awareness campaigns and improvements in living conditions. In 2004, almost 11 million people experienced burns severe enough to warrant medical treatment. Advances over the past several decades in aggressive resuscitation, nutrition, excision and grafting have reduced morbidity and mortality. Incorporation of pharmacotherapeutics into treatment regimens may further reduce complications of severe burn injuries. Areas covered: Severe burn injuries, as well as other forms of stress and trauma, trigger a hypermetabolic response that, if left untreated, impedes recovery. In the past two decades, use of anabolic agents, β-adrenergic receptor antagonists and anti-hyperglycemic agents has successfully counteracted post-burn morbidities including catabolism, the catecholamine-mediated response and insulin resistance. Here, the authors review the most up-to-date information on currently used pharmacotherapies in the treatment of these sequelae of severe burns and the insights that have expanded the understanding of the pathophysiology of severe burns. Expert opinion: Existing drugs offer promising advances in the care of burn injuries. Continued gains in the understanding of the molecular mechanisms driving the hypermetabolic response will enable the application of additional existing drugs to be broadened to further attenuate the hypermetabolic response.


Critical Care Medicine | 2006

Hypertonic saline resuscitation prevents hydrostatically induced intestinal edema and ileus

Ravi S. Radhakrishnan; Hasen Xue; Stacey D. Moore-Olufemi; Norman W. Weisbrodt; Frederick A. Moore; Steven J. Allen; Glen A. Laine; Charles S. Cox

Objective:We have shown that acute edema induced by mesenteric venous hypertension (MV-HTN) impairs intestinal transit and reduces the standardized engineering measures of intestinal stiffness (elastic modulus) and residual stress (opening angle). We hypothesized that hypertonic saline (7.5%) would reverse these detrimental effects of acute edema. Design:Laboratory study. Setting:University laboratory. Subjects:Male Sprague Dawley rats (270–330 g). Interventions:Rats were randomized to five groups: sham, MV-HTN alone, MV-HTN with 4 mL/kg normal saline resuscitation (equal volume), MV-HTN with 33 mL/kg normal saline resuscitation (equal salt), and MV-HTN with 4 mL/kg hypertonic saline. Intestinal edema was measured by wet to dry tissue weight ratio. A duodenal catheter was placed and, 30 mins before death, fluorescein isothiocyanate Dextran was injected. At death, dye concentrations were measured to determine intestinal transit. Segments of distal ileum were hung to a fixed point in a tissue bath and to a force displacement transducer and stretched in increments of 1 mm; we recorded the new length and the corresponding force from the force displacement transducer to determine elastic modulus. Next, two transverse cuts were made yielding a 1- to 2-mm thick ring-shaped segment of tissue which was then cut radially to open the ring. Then the opening angle was measured. Measurements and Main Results:MV-HTN, MV-HTN with 4 mL/kg normal saline, and MV-HTN with 33 mL/kg normal saline caused a significant increase in tissue edema and a significant decrease in intestinal transit, stiffness, and residual stress compared with sham. Hypertonic saline significantly lessened the effect of edema on intestinal transit and prevented the changes in stiffness and residual stress. Conclusions:Hypertonic saline prevented intestinal tissue edema. In addition, hypertonic saline improved intestinal transit, possibly through more efficient transmission of muscle force through stiffer intestinal tissue.


Shock | 2007

Hypertonic saline modulation of intestinal tissue stress and fluid balance.

Charles S. Cox; Ravi S. Radhakrishnan; Lindsey Villarrubia; Hasen Xue; Karen S. Uray; Brijesh S. Gill; Randolph H. Stewart; Glen A. Laine

Crystalloid-based resuscitation of severely injured trauma patients leads to intestinal edema. A potential mechanism of intestinal edema-induced ileus is a reduction of myosin light chain phosphorylation in intestinal smooth muscle. We sought to determine if the onset of edema initiated a measurable, early mechanotransductive signal and if hypertonic saline (HS) can modulate this early signal by changing intestinal fluid balance. An anesthetized rat model of acute interstitial intestinal edema was used. At laparotomy, the mesenteric lymphatic was cannulated to measure lymph flow and pressure, and a fluid-filled micropipette was placed in the intestinal submucosa to measure interstitial pressure. Rats were randomized into four groups (n = 6 per group): sham, mesenteric venous hypertension + 80 mL/kg 0.9% isotonic sodium chloride solution (ISCS 80), mesenteric venous hypertension + 80 mL/kg 0.9% ISCS + 4 mL/kg 7.5% saline (ISCS 80 + HS), or 4 mL/kg 7.5% saline (HS alone) to receive the aforementioned intravenous fluid administered over 5 min. Measurements were made 30 min after completion of the preparation. Tissue water, lymph flow, and interstitial pressure were measured. Resultant applied volume induced stress on the smooth muscle (σravi-muscularis) was calculated. Mesenteric venous hypertension and crystalloid resuscitation caused intestinal edema that was prevented by HS. Intestinal edema caused an early increase in intestinal interstitial pressure that was prevented by HS. Hypertonic saline did not augment lymphatic removal of intestinal edema. σravi-muscularis was increased with onset of edema and prevented by HS, paralleling the interstitial pressure data. Intestinal edema causes an early increase in interstitial pressure that is prevented by HS. Prevention of the edema-induced increase in interstitial pressure serves to blunt the mechanotransductive signal of σravi-muscularis.


Critical Care Medicine | 2007

Hypertonic saline reverses stiffness in a Sprague-Dawley rat model of acute intestinal edema, leading to improved intestinal function

Ravi S. Radhakrishnan; Hari Radhakrishnan; Hasen Xue; Stacey D. Moore-Olufemi; Anshu B. Mathur; Norman W. Weisbrodt; Frederick A. Moore; Steven J. Allen; Glen A. Laine; Charles S. Cox

Introduction:Acute edema induced by resuscitation and mesenteric venous hypertension impairs intestinal transit and contractility and reduces intestinal stiffness. Pretreatment with hypertonic saline (HS) can prevent these changes. Changes in tissue stiffness have been shown to trigger signaling cascades via stress fiber formation. We proposed that acute intestinal edema leads to a decrease in intestinal transit that may be mediated by changes in stiffness, leading to stress fiber formation and decreased intestinal transit. Furthermore, HS administration will abolish these detrimental effects of edema. Results:Intestinal edema causes a significant increase in tissue water and a significant decrease in intestinal transit and stiffness compared with sham. HS reversed these changes to sham levels. In addition, tissue edema led to significant stress fiber formation and decreased numbers of focal contacts. HS preserved tissue stiffness, prevented stress fiber formation, and was associated with improved intestinal function. Conclusion:HS eliminates intestinal tissue edema formation and improves intestinal transit. In addition, the action of HS may be mediated through its preservation of tissue stiffness, which leads to prevention of signaling via stress fiber formation, leading to preserved intestinal function. Finally, intestinal edema may provide a novel physiologic model for examining stiffness and stress fiber signaling.


Critical Care Medicine | 2009

Hypertonic saline alters hydraulic conductivity and up-regulates mucosal/submucosal aquaporin 4 in resuscitation-induced intestinal edema

Ravi S. Radhakrishnan; Shinil K. Shah; Samuel Lance; Hari Radhakrishnan; Hasen Xue; Geetha L. Radhakrishnan; Uma Ramaswamy; Peter A. Walker; Karen S. Uray; Glen A. Laine; Randolph H. Stewart; Charles S. Cox

Objective:To characterize membrane conductivity by applying mathematical modeling techniques and immunohistochemistry and to localize and predict areas of the bowel where aquaporins may be associated with edema resolution/prevention associated with hypertonic saline. Intestinal edema induced by resuscitation and mesenteric venous hypertension impairs intestinal transit/contractility. Hypertonic saline decreases intestinal edema and improves transit. Aquaporins are water transport membrane proteins that may be up-regulated with edema and/or hypertonic saline. Design:Laboratory study. Setting:University research laboratory. Subjects:Male Sprague Dawley rats, weighing 270 to 330 g. Interventions:Rats were randomized to control (with and without hypertonic saline) and mesenteric venous hypertension with either 80 mL/kg normal saline (RESUS + VH + VEH) or 80 mL/kg normal saline with hypertonic saline (RESUS + VH + HTS). After 6 hrs, intestinal wet/dry ratios, urine output, peritoneal fluid, and intraluminal fluid were measured. Hydraulic conductivity was calculated from our previously known and published pressure-flow data. The cDNA microarray, Western blot, polymerase chain reaction, and immunohistochemistry studies were conducted for candidate aquaporins and distribution in intestinal edema resolution. Measurements and Main Results:Hypertonic saline decreased edema and increased urine, intraluminal, and peritoneal fluid volume. RESUS + VH favors fluid flux into the interstitium. Hypertonic saline causes increased hydraulic conductivity at the seromuscular and mucosal surfaces at the same time limiting flow into the interstitium. This is associated with increased aquaporin 4 expression in the intestinal mucosa and submucosa. Conclusions:Hypertonic saline mitigates intestinal edema development and promotes fluid redistribution secondary to increased membrane conductivity at the mucosal and seromuscular surfaces. This is associated with up-regulation of aquaporin 4 gene expression and protein. Aquaporin 4 may be a useful therapeutic target for strategies to enhance edema resolution.


Shock | 2008

Pretreatment with bone morphogenetic protein-7 (BMP-7) mimics ischemia preconditioning following intestinal ischemia/reperfusion injury in the intestine and liver.

Ravi S. Radhakrishnan; Geetha L. Radhakrishnan; Hari Radhakrishnan; Hasen Xue; Sasha D. Adams; Stacey D. Moore-Olufemi; Matthew T. Harting; Charles S. Cox; Bruce C. Kone

Intestinal ischemia/reperfusion (I/R) injury has been shown to cause intestinal mucosal injury and adversely affect function. Ischemic preconditioning (IPC) has been shown to protect against intestinal I/R injury by reducing polymorphonuclear leukocyte infiltration, intestinal mucosal injury, and liver injury, and preserve intestinal transit. Bone morphogenetic protein 7 (BMP-7) has been shown to protect against I/R injury in the kidney and brain. Recently, microarray analysis has been used to examine the possible IPC candidate pathways. This work revealed that IPC may work through upregulation of BMP-7. The purpose of this study was to examine if pretreatment with BMP-7 would replicate the effects seen with IPC in the intestine and liver after intestinal I/R. Rats were randomized to six groups: sham, I/R (30min of superior mesenteric artery occlusion and 6 h of R), IPC+R (three cycles of superior mesenteric artery occlusion for 4 min and R for 10 min), IPC+I/R, BMP-7+R (100 &mgr;m/kg recombinant human BMP-7), or BMP-7+I/R. A duodenal catheter was placed, and 30 min before sacrifice, fluorescein isothiocyanate-Dextran was injected. At sacrifice, dye concentrations were measured to determine intestinal transit. Ileal mucosal injury was determined by histology and myeloperoxidase activity was used as a marker of polymorphonuclear leukocyte infiltration. Serum levels of aspartate aminotransferase were measured at sacrifice to determine liver injury. Pretreatment with BMP-7 significantly improved intestinal transit and significantly decreased intestinal mucosal injury and serum aspartate aminotransferase levels, comparable to animals undergoing IPC. In conclusion, BMP-7 protected against intestinal I/R-induced intestinal and liver injury. Bone morphogenetic protein 7 may be a more logical surrogate to IPC in the prevention of injury in the setting of intestinal I/R.


Journal of Trauma-injury Infection and Critical Care | 2008

Effects of anesthesia on lipopolysaccharide-induced changes in serum cytokines.

Sasha D. Adams; Ravi S. Radhakrishnan; Kenneth S. Helmer; David W. Mercer

BACKGROUND The pathophysiology of sepsis is incompletely understood, however alterations in systemic inflammation and serum cytokines are thought to play a central role. In the rat, ketamine, but not isoflurane, prevents hepatic injury from lipopolysaccharide (LPS). The effect of these anesthetics on the systemic inflammatory response and other organs remains to be fully elucidated. We hypothesized that ketamine, but not isoflurane, would blunt the cytokine response to LPS administration. METHODS Male rats received no anesthesia, intraperitoneal ketamine (70 mg/kg), or inhalational isoflurane. One hour later, LPS (20 mg/kg, intraperitoneal) or saline was given for 5 hours and rats were killed. Gastric fluid volumes were determined as an index of gastric emptying. Serum was collected and cytokines measured via a multiplexed suspension immunoassay. RESULTS In nonanesthetized rats, LPS increased gastric luminal fluid accumulation and serum levels of proinflammatory cytokines when compared with saline controls. Anesthesia with either ketamine or isoflurane caused a significant reduction in LPS-induced changes in serum cytokines, although ketamine had a more dramatic reduction in tumor necrosis factor alpha levels than did isoflurane. Both anesthetics reduced the interleukin IL-6/IL-10 ratio in response to LPS when compared with LPS alone. Ketamine, but not isoflurane, prevented LPS-induced gastric luminal fluid accumulation. CONCLUSIONS These data indicate that both ketamine and isoflurane diminish the systemic inflammatory response to LPS in the rat as measured by serum cytokines and a reduced IL-6/IL-10 ratio. However, only ketamine improves LPS-induced gastric dysfunction, perhaps secondary to its ability to reduce serum tumor necrosis factor alpha levels more effectively.

Collaboration


Dive into the Ravi S. Radhakrishnan's collaboration.

Top Co-Authors

Avatar

Charles S. Cox

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Fredrick J. Bohanon

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Xiaofu Wang

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Jia Zhou

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Hasen Xue

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Omar Nunez Lopez

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cristiana Rastellini

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Steven J. Allen

University of Texas Health Science Center at Houston

View shared research outputs
Researchain Logo
Decentralizing Knowledge