Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ravi V. Bellamkonda is active.

Publication


Featured researches published by Ravi V. Bellamkonda.


Biomaterials | 2001

Agarose gel stiffness determines rate of DRG neurite extension in 3D cultures

A.P. Balgude; Xiaojun Yu; A. Szymanski; Ravi V. Bellamkonda

The optimization of scaffold mechanical properties for neurite extension is critical for neural tissue engineering. Agarose hydrogels can be used to stimulate and maintain three-dimensional neurite extension from primary sensory ganglia in vitro. The present study explores the structure-function relationship between dorsal root ganglion (DRG) neurite extension and agarose gel mechanical properties. A range of agarose gels of differing concentrations were generated and the corresponding rate of E9 DRG neurite extension was measured. Rate of neurite extension was inversely correlated to the mechanical stiffness of agarose gels in the range of 0.75-2.00% (wt/vol) gel concentrations. In addition, we postulate a physical model that predicts the rate of neurite extension in agarose gels, if gel stiffness is a known parameter. This model is based on Heidemann and Buxbaums model of neurite extension. These results, if extended to scaffolds of other morphological and chemical features, would contribute significantly to the design criteria of three-dimensional scaffolds for neural tissue engineering.


Biomaterials | 2008

The role of aligned polymer fiber-based constructs in the bridging of long peripheral nerve gaps.

Young Tae Kim; Valerie K. Haftel; Satish Kumar; Ravi V. Bellamkonda

Peripheral nerve regeneration across long nerve gaps is clinically challenging. Autografts, the standard of therapy, are limited by availability and other complications. Here, using rigorous anatomical and functional measures, we report that aligned polymer fiber-based constructs present topographical cues that facilitate the regeneration of peripheral nerves across long nerve gaps. Significantly, aligned but not randomly oriented fibers elicit regeneration, establishing that topographical cues can influence endogenous nerve repair mechanisms in the absence of exogenous growth promoting proteins. Axons regenerated across a 17 mm nerve gap, reinnervated muscles, and reformed neuromuscular junctions. Electrophysiological and behavioral analyses revealed that aligned but not randomly oriented constructs facilitated both sensory and motor nerve regeneration, significantly improved functional outcomes. Additionally, a quantitative comparison of DRG outgrowth in vitro and nerve regeneration in vivo on aligned and randomly oriented fiber films clearly demonstrated the significant role of sub-micron scale topographical cues in stimulating endogenous nerve repair mechanisms.


Annual Review of Biomedical Engineering | 2010

Topography, Cell Response, and Nerve Regeneration

Diane Hoffman-Kim; Jennifer A. Mitchel; Ravi V. Bellamkonda

In the body, cells encounter a complex milieu of signals, including topographical cues, in the form of the physical features of their surrounding environment. Imposed topography can affect cells on surfaces by promoting adhesion, spreading, alignment, morphological changes, and changes in gene expression. Neural response to topography is complex, and it depends on the dimensions and shapes of physical features. Looking toward repair of nerve injuries, strategies are being explored to engineer guidance conduits with precise surface topographies. How neurons and other cell types sense and interpret topography remains to be fully elucidated. Studies reviewed here include those of topography on cellular organization and function as well as potential cellular mechanisms of response.


Annual Review of Biomedical Engineering | 2009

Implanted Neural Interfaces: Biochallenges and Engineered Solutions

Warren M. Grill; Sharon E. Norman; Ravi V. Bellamkonda

Neural interfaces are connections that enable two-way exchange of information with the nervous system. These connections can occur at multiple levels, including with peripheral nerves, with the spinal cord, or with the brain; in many instances, fundamental biophysical and biological challenges are shared across these levels. We review these challenges, including selectivity, stability, resolution versus invasiveness, implant-induced injury, and the host-interface response. Subsequently, we review the engineered solutions to these challenges, including electrode designs and geometry, stimulation waveforms, materials, and surface modifications. Finally, we consider emerging opportunities to improve neural interfaces, including cellular-level silicon to neuron connections, optical stimulation, and approaches to control inflammation. Overcoming the biophysical and biological challenges will enable effective high-density neural interfaces for stimulation and recording.


Journal of Controlled Release | 2003

Controlled targeting of liposomal doxorubicin via the folate receptor in vitro

Justin M. Saul; Ananth Annapragada; Jayaganesh V. Natarajan; Ravi V. Bellamkonda

Differential expression of folate receptor has been exploited to target liposomes to tumors. Astrogliomas express low folate receptor levels and are typically surrounded by normal cells expressing little or no folate receptors. While targeting cells with high over-expression of folate receptor (KB and HeLa) has been demonstrated, it is unclear whether targeting tumors expressing low levels of folate receptor is possible. In this study, it was demonstrated that optimizing the number of targeting ligands (folic acid) enables differential liposomal doxorubicin uptake in C6 glioma while sparing healthy cortical cells. By micellization of folate conjugates and their controlled insertion into pre-formed liposomes, tight control over the number of targeting ligands per liposome was demonstrated. Doxorubicin uptake in KB and C6 cells was dependent on the number of targeting ligands, while cortical cells showed increasing non-specific uptake with ligand number. Co-culture of C6 glioma with cortical cells confirmed preferential uptake in C6 glioma relative to cortical cells. A cell kill experiment showed that folate-targeted liposomal doxorubicin is cytotoxic and slows proliferation of KB and C6 cells with minimal effect on cortical cells. Therefore modulation of targeting ligand number enables significant differential uptake of doxorubicin in cells with low levels of folate receptor.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Sustained delivery of thermostabilized chABC enhances axonal sprouting and functional recovery after spinal cord injury

Hyun-Jung Lee; Robert J. McKeon; Ravi V. Bellamkonda

Chondroitin sulfate proteoglycans (CSPGs) are a major class of axon growth inhibitors that are up-regulated after spinal cord injury (SCI) and contribute to regenerative failure. Chondroitinase ABC (chABC) digests glycosaminoglycan chains on CSPGs and can thereby overcome CSPG-mediated inhibition. But chABC loses its enzymatic activity rapidly at 37 °C, necessitating the use of repeated injections or local infusions for a period of days to weeks. These infusion systems are invasive, infection-prone, and clinically problematic. To overcome this limitation, we have thermostabilized chABC and developed a system for its sustained local delivery in vivo, obviating the need for chronically implanted catheters and pumps. Thermostabilized chABC remained active at 37 °C in vitro for up to 4 weeks. CSPG levels remained low in vivo up to 6 weeks post-SCI when thermostabilized chABC was delivered by a hydrogel-microtube scaffold system. Axonal growth and functional recovery following the sustained local release of thermostabilized chABC versus a single treatment of unstabilized chABC demonstrated significant differences in CSPG digestion. Animals treated with thermostabilized chABC in combination with sustained neurotrophin-3 delivery showed significant improvement in locomotor function and enhanced growth of cholera toxin B subunit–positive sensory axons and sprouting of serotonergic fibers. Therefore, improving chABC thermostability facilitates minimally invasive, sustained, local delivery of chABC that is potentially effective in overcoming CSPG-mediated regenerative failure. Combination therapy with thermostabilized chABC with neurotrophic factors enhances axonal regrowth, sprouting, and functional recovery after SCI.


Brain Research | 2007

Dexamethasone Coated Neural Probes Elicit Attenuated Inflammatory Response and Neuronal Loss Compared to Uncoated Neural Probes

Yinghui Zhong; Ravi V. Bellamkonda

Glial scar formation around implanted silicon neural probes compromises their ability to facilitate long-term recordings. One approach to modulate the tissue reaction around implanted probes in the brain is to develop probe coatings that locally release anti-inflammatory drugs. In this study, we developed a nitrocellulose-based coating for the local delivery of the anti-inflammatory drug dexamethasone (DEX). Silicon neural probes with and without nitrocellulose-DEX coatings were implanted into rat brains, and inflammatory response was evaluated 1 week and 4 weeks post implantation. DEX coatings significantly reduced the reactivity of microglia and macrophages 1 week post implantation as evidenced by ED1 immunostaining. CS56 staining demonstrated that DEX treatment significantly reduced chondroitin sulfate proteoglycan (CSPG) expression 1 week post implantation. Both at 1-week and at 4-week time points, GFAP staining for reactive astrocytes and neurofilament (NF) staining revealed that local DEX treatment significantly attenuated astroglial response and reduced neuronal loss in the vicinity of the probes. Weak ED1, neurocan, and NG2-positive signal was detected 4 weeks post implantation for both coated and uncoated probes, suggesting a stabilization of the inflammatory response over time in this implant model. In conclusion, this study demonstrates that the nitrocellulose-DEX coating can effectively attenuate the inflammatory response to the implanted neural probes, and reduce neuronal loss in the vicinity of the coated probes. Thus anti-inflammatory probe coatings may represent a promising approach to attenuate astroglial scar and reduce neural loss around implanted neural probes.


American Journal of Roentgenology | 2006

A liposomal nanoscale contrast agent for preclinical CT in mice

Srinivasan Mukundan; Ketan B. Ghaghada; Cristian T. Badea; Chen-Yu Kao; Laurence W. Hedlund; James M. Provenzale; G. Allan Johnson; Emmanuel Chen; Ravi V. Bellamkonda; Ananth Annapragada

OBJECTIVE The goal of this study was to determine if an iodinated, liposomal contrast agent could be used for high-resolution, micro-CT of low-contrast, small-size vessels in a murine model. MATERIALS AND METHODS A second-generation, liposomal blood pool contrast agent encapsulating a high concentration of iodine (83-105 mg I/mL) was evaluated. A total of five mice weighing between 20 and 28 g were infused with equivalent volume doses (500 microL of contrast agent/25 g of mouse weight) and imaged with our micro-CT system for intervals of up to 240 min postinfusion. The animals were anesthetized, mechanically ventilated, and vital signs monitored allowing for simultaneous cardiac and respiratory gating of image acquisition. RESULTS Initial enhancement of about 900 H in the aorta was obtained, which decreased to a plateau level of approximately 800 H after 2 hr. Excellent contrast discrimination was shown between the myocardium and cardiac blood pool (650-700 H). No significant nephrogram was identified, indicating the absence of renal clearance of the agent. CONCLUSION The liposomal-based iodinated contrast agent shows long residence time in the blood pool, very high attenuation within submillimeter vessels, and no significant renal clearance rendering it an effective contrast agent for murine vascular imaging using a micro-CT scanner.


Journal of Neural Engineering | 2005

Biomechanical analysis of silicon microelectrode-induced strain in the brain

Hyun-Jung Lee; Ravi V. Bellamkonda; Wei Sun; Marc E. Levenston

The ability to successfully interface the brain to external electrical systems is important both for fundamental understanding of our nervous system and for the development of neuroprosthetics. Silicon microelectrode arrays offer great promise in realizing this potential. However, when they are implanted into the brain, recording sensitivity is lost due to inflammation and astroglial scarring around the electrode. The inflammation and astroglial scar are thought to result from acute injury during electrode insertion as well as chronic injury caused by micromotion around the implanted electrode. To evaluate the validity of this assumption, the finite element method (FEM) was employed to analyze the strain fields around a single Michigan Si microelectrode due to simulated micromotion. Micromotion was mimicked by applying a force to the electrode, fixing the boundaries of the brain region and applying appropriate symmetry conditions to nodes lying on symmetry planes. Characteristics of the deformation fields around the electrode including maximum electrode displacement, strain fields and relative displacement between the electrode and the adjacent tissue were examined for varying degrees of physical coupling between the brain and the electrode. Our analysis demonstrates that when physical coupling between the electrode and the brain increases, the micromotion-induced strain of tissue around the electrode decreases as does the relative slip between the electrode and the brain. These results support the use of neuro-integrative coatings on electrode arrays as a means to reduce the micromotion-induced injury response.


Journal of the Royal Society Interface | 2008

Biomaterials for the central nervous system.

Yinghui Zhong; Ravi V. Bellamkonda

Biomaterials are widely used to help treat neurological disorders and/or improve functional recovery in the central nervous system (CNS). This article reviews the application of biomaterials in (i) shunting systems for hydrocephalus, (ii) cortical neural prosthetics, (iii) drug delivery in the CNS, (iv) hydrogel scaffolds for CNS repair, and (v) neural stem cell encapsulation for neurotrauma. The biological and material requirements for the biomaterials in these applications are discussed. The difficulties that the biomaterials might face in each application and the possible solutions are also reviewed in this article.

Collaboration


Dive into the Ravi V. Bellamkonda's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lohitash Karumbaiah

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Tarun Saxena

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Efstathios Karathanasis

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vivek Mukhatyar

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Kathleen M. McNeeley

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Isaac P. Clements

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

S. Balakrishna Pai

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Xiaojun Yu

Stevens Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge