Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ravinder K. Gill is active.

Publication


Featured researches published by Ravinder K. Gill.


Pharmaceutical Research | 2007

Bile Acid Transporters: Structure, Function, Regulation and Pathophysiological Implications

Waddah A. Alrefai; Ravinder K. Gill

Specific transporters expressed in the liver and the intestine, play a critical role in driving the enterohepatic circulation of bile acids. By preserving a circulating pool of bile acids, an important factor influencing bile flow, these transporters are involved in maintaining bile acid and cholesterol homeostasis. Enterohepatic circulation of bile acids is fundamentally composed of two major processes: secretion from the liver and absorption from the intestine. In the hepatocytes, the vectorial transport of bile acids from blood to bile is ensured by Na+ taurocholate co-transporting peptide (NTCP) and organic anion transport polypeptides (OATPs). After binding to a cytosolic bile acid binding protein, bile acids are secreted into the canaliculus via ATP-dependent bile salt excretory pump (BSEP) and multi drug resistant proteins (MRPs). Bile acids are then delivered to the intestinal lumen through bile ducts where they emulsify dietary lipids and cholesterol to facilitate their absorption. Intestinal epithelial cells reabsorb the majority of the secreted bile acids through the apical sodium dependent bile acid transporter (ASBT) and sodium independent organic anion transporting peptide (OATPs). Cytosolic ileal bile acid binding protein (IBABP) mediates the transcellular movement of bile acids to the basolateral membrane across which they exit the cells via organic solute transporters (OST). An essential role of bile acid transporters is evident from the pathology associated with their genetic disruption or dysregulation of their function. Malfunctioning of hepatic and intestinal bile acid transporters is implicated in the pathophysiology of cholestatic liver disease and the depletion of circulating pool of bile acids, respectively. Extensive efforts have been recently made to enhance our understanding of the structure, function and regulation of the bile acid transporters and exploring new potential therapeutics to treat bile acid or cholesterol related diseases. This review will highlight current knowledge about structure, function and molecular characterization of bile acid transporters and discuss the implications of their defects in various hepatic and intestinal disorders.


Gut microbes | 2010

Infectious diarrhea: Cellular and molecular mechanisms

Kim Hodges; Ravinder K. Gill

Diarrhea caused by enteric infections is a major factor in morbidity and mortality worldwide. An estimated 2-4 billion episodes of infectious diarrhea occur each year and are especially prevalent in infants. This review highlights the cellular and molecular mechanisms underlying diarrhea associated with the three classes of infectious agents, i.e. bacteria, viruses and parasites. Several bacterial pathogens have been chosen as model organisms, including Vibrio cholerae as a classical example of secretory diarrhea, Clostridium difficile and Shigella species as agents of inflammatory diarrhea and selected strains of pathogenic Escherichia coli (E. coli) to discuss the recent advances in alteration of epithelial ion absorption. Many of the recent studies addressing epithelial ion transport and barrier function have been carried out using viruses and parasites. Here, we focus on the rapidly developing field of viral diarrhea including rotavirus, norovirus and astrovirus infections. Finally we discuss Giardia lamblia and Entamoeba histolytica as examples of parasitic diarrhea. Parasites have a greater complexity than the other pathogens and are capable of creating molecules similar to those produced by the host, such as serotonin and PGE2. The underlying mechanisms of infectious diarrhea discussed include alterations in ion transport and tight junctions as well as the virulence factors, which alter these processes either through direct effects or indirectly through inflammation and neurotransmitters.


Journal of Clinical Investigation | 2007

Mechanism underlying inhibition of intestinal apical Cl–/OH– exchange following infection with enteropathogenic E. coli

Ravinder K. Gill; Alip Borthakur; Kim Hodges; Jerrold R. Turner; Daniel R. Clayburgh; Seema Saksena; Ayesha Zaheer; Krishnamurthy Ramaswamy; Gail Hecht; Pradeep K. Dudeja

Enteropathogenic E. coli (EPEC) is a major cause of infantile diarrhea, but the pathophysiology underlying associated diarrhea is poorly understood. We examined the role of the luminal membrane Cl(-)/OH(-) exchange process in EPEC pathogenesis using in vitro and in vivo models. Cl(-)/OH(-) exchange activity was measured as OH(-) gradient-driven (36)Cl(-) uptake. EPEC infection (60 minutes-3 hours) inhibited apical Cl(-)/OH(-) exchange activity in human intestinal Caco-2 and T84 cells. This effect was dependent upon the bacterial type III secretory system (TTSS) and involved secreted effector molecules EspG and EspG2, known to disrupt the host microtubular network. The microtubule-disrupting agent colchicine (100 muM, 3 hours) also inhibited (36)Cl(-) uptake. The plasma membrane expression of major apical anion exchanger DRA (SLC26A3) was considerably reduced in EPEC-infected cells, corresponding with decreased Cl(-)/OH(-) exchange activity. Confocal microscopic studies showed that EPEC infection caused a marked redistribution of DRA from the apical membrane to intracellular compartments. Interestingly, infection of cells with an EPEC mutant deficient in espG significantly attenuated the decrease in surface expression of DRA protein as compared with treatment with wild-type EPEC. EPEC infection in vivo (1 day) also caused marked redistribution of surface DRA protein in the mouse colon. Our data demonstrate that EspG and EspG2 play an important role in contributing to EPEC infection-associated inhibition of luminal membrane chloride transport via modulation of surface DRA expression.


Journal of Biological Chemistry | 2008

Toll-like Receptor 4 Mediates Induction of the Bcl10-NFκB-Interleukin-8 Inflammatory Pathway by Carrageenan in Human Intestinal Epithelial Cells

Sumit Bhattacharyya; Ravinder K. Gill; Mei Ling Chen; Fuming Zhang; Robert J. Linhardt; Pradeep K. Dudeja; Joanne K. Tobacman

The sulfated polysaccharide carrageenan (CGN) induces activation of NFκB and interleukin 8 (IL-8) in human colonic epithelial cells through a pathway of innate immunity mediated by Bcl10 (B-cell CLL/lymphoma 10). In this report, we identify Toll-like receptor 4 (TLR4), a member of the family of innate immune receptors, as the surface membrane receptor for CGN in human colonic epithelial cells. Experiments with fluorescence-tagged CGN demonstrated a marked reduction in binding of CGN to human intestinal epithelial cells and to RAW 264.7 mouse macrophages, following exposure to TLR4 blocking antibody (HTA-125). Binding of CGN to 10ScNCr/23 mouse macrophages, which are deficient in the genetic locus for TLR4, was absent. Additional experiments with TLR4 blocking antibody and TLR4 small interfering RNAs showed 80% reductions in CGN-induced increases in Bcl10 and IL-8. Transfection with dominant-negative MyD88 plasmid demonstrated MyD88 dependence of the CGN-TLR4-triggered increases in Bcl10 and IL-8. Therefore, these results indicate that CGN-induced inflammation in human colonocytes proceeds through a pathway of innate immunity, perhaps related to the unusual α-1,3-galactosidic linkage characteristic of CGN, and suggest how dietary CGN intake may contribute to human intestinal inflammation. Because CGN is a commonly used food additive in the Western diet, clarification of its effects and mechanisms of action are vital to issues of food safety.


Journal of Cellular Biochemistry | 2008

Regulation of monocarboxylate transporter 1 (MCT1) promoter by butyrate in human intestinal epithelial cells: Involvement of NF-κB pathway

Alip Borthakur; Seema Saksena; Ravinder K. Gill; Waddah A. Alrefai; Krishnamurthy Ramaswamy; Pradeep K. Dudeja

Butyrate, a short chain fatty acid (SCFA) produced by bacterial fermentation of undigested carbohydrates in the colon, constitutes the major fuel for colonocytes. We have earlier shown the role of apically localized monocarboxylate transporter isoform 1 (MCT1) in transport of butyrate into human colonic Caco‐2 cells. In an effort to study the regulation of MCT1 gene, we and others have cloned the promoter region of the MCT1 gene and identified cis elements for key transcription factors. A previous study has shown up‐regulation of MCT1 expression, and activity by butyrate in AA/C1 human colonic epithelial cells, however, the detailed mechanisms of this up‐regulation are not known. In this study, we demonstrate that butyrate, a substrate for MCT1, stimulates MCT1 promoter activity in Caco‐2 cells. This effect was dose dependent and specific to butyrate as other predominant SCFAs, acetate, and propionate, were ineffective. Utilizing progressive deletion constructs of the MCT1 promoter, we showed that the putative butyrate responsive elements are in the −229/+91 region of the promoter. Butyrate stimulation of the MCT1 promoter was found to be independent of PKC, PKA, and tyrosine kinases. However, specific inhibitors of the NF‐κB pathway, lactacystein (LC), and caffeic acid phenyl ester (CAPE) significantly reduced the MCT1 promoter stimulation by butyrate. Also, butyrate directly stimulated NF‐κB‐dependent luciferase reporter activity. Histone deacetylase (HDAC) inhibitor trichostatin A (TSA) also stimulated MCT1 promoter activity, however, unlike butyrate, this stimulation was unaltered by the NF‐κB inhibitors. Further, the combined effect of butyrate, and TSA on MCT1 promoter activity was additive, indicating that their mechanisms of action were independent. Our results demonstrate the involvement of NF‐κB pathway in the regulation of MCT1 promoter activity by butyrate. J. Cell. Biochem. 103: 1452–1463, 2008.


Gastroenterology | 2008

Down-regulated in Adenoma Cl/HCO3 Exchanger Couples With Na/H Exchanger 3 for NaCl Absorption in Murine Small Intestine

Nancy M. Walker; Janet E. Simpson; Pei–Fen Yen; Ravinder K. Gill; Elizabeth V. Rigsby; Jennifer M. Brazill; Pradeep K. Dudeja; Clifford W. Schweinfest; Lane L. Clarke

BACKGROUND & AIMS Electroneutral NaCl absorption across small intestine contributes importantly to systemic fluid balance. Disturbances in this process occur in both obstructive and diarrheal diseases, eg, cystic fibrosis, secretory diarrhea. NaCl absorption involves coupling of Cl(-)/HCO(3)(-) exchanger(s) primarily with Na(+)/H(+) exchanger 3 (Nhe3) at the apical membrane of intestinal epithelia. Identity of the coupling Cl(-)/HCO(3)(-) exchanger(s) was investigated using mice with gene-targeted knockout (KO) of Cl(-)/HCO(3)(-) exchangers: Slc26a3, down-regulated in adenoma (Dra) or Slc26a6, putative anion transporter-1 (Pat-1). METHODS Intracellular pH (pH(i)) of intact jejunal villous epithelium was measured by ratiometric microfluoroscopy. Ussing chambers were used to measure transepithelial (22)Na(36)Cl flux across murine jejunum, a site of electroneutral NaCl absorption. Expression was estimated using immunofluorescence and quantitative polymerase chain reaction. RESULTS Basal pH(i) of DraKO epithelium, but not Pat-1KO epithelium, was alkaline, whereas pH(i) in the Nhe3KO was acidic relative to wild-type. Altered pH(i) was associated with robust Na(+)/H(+) and Cl(-)/HCO(3)(-) exchange activity in the DraKO and Nhe3KO villous epithelium, respectively. Contrary to genetic ablation, pharmacologic inhibition of Nhe3 in wild-type did not alter pH(i) but coordinately inhibited Dra. Flux studies revealed that Cl(-) absorption was essentially abolished (>80%) in the DraKO and little changed (<20%) in the Pat-1KO jejunum. Net Na(+) absorption was unaffected. Immunofluorescence demonstrated modest Dra expression in the jejunum relative to large intestine. Functional and expression studies did not indicate compensatory changes in relevant transporters. CONCLUSIONS These studies provide functional evidence that Dra is the major Cl(-)/HCO(3)(-) exchanger coupled with Nhe3 for electroneutral NaCl absorption across mammalian small intestine.


Gastroenterology | 2009

Role of Down-Regulated in Adenoma Anion Exchanger in HCO3 - Secretion Across Murine Duodenum

Nancy M. Walker; Janet E. Simpson; Jennifer M. Brazill; Ravinder K. Gill; Pradeep K. Dudeja; Clifford W. Schweinfest; Lane L. Clarke

BACKGROUND & AIMS The current model of duodenal HCO(3)(-) secretion proposes that basal secretion results from Cl(-)/HCO(3)(-) exchange, whereas cyclic adenosine monophosphate (cAMP)-stimulated secretion depends on a cystic fibrosis transmembrane conductance regulator channel (Cftr)-mediated HCO(3)(-) conductance. However, discrepancies in applying the model suggest that Cl(-)/HCO(3)(-) exchange also contributes to cAMP-stimulated secretion. Of 2 candidate Cl(-)/HCO(3)(-) exchangers, studies of putative anion transporter-1 knockout (KO) mice find little contribution of putative anion transporter-1 to basal or cAMP-stimulated secretion. Therefore, the role of down-regulated in adenoma (Dra) in duodenal HCO(3)(-) secretion was investigated using DraKO mice. METHODS Duodenal HCO(3)(-) secretion was measured by pH stat in Ussing chambers. Apical membrane Cl(-)/HCO(3)(-) exchange was measured by microfluorometry of intracellular pH in intact villous epithelium. Dra expression was assessed by immunofluorescence. RESULTS Basal HCO(3)(-) secretion was reduced approximately 55%-60% in the DraKO duodenum. cAMP-stimulated HCO(3)(-) secretion was reduced approximately 50%, but short-circuit current was unchanged, indicating normal Cftr activity. Microfluorimetry of villi demonstrated that Dra is the dominant Cl(-)/HCO(3)(-) exchanger in the lower villous epithelium. Dra expression increased from villous tip to crypt. DraKO and wild-type villi also demonstrated regulation of apical Na(+)/H(+) exchange by Cftr-dependent cell shrinkage during luminal Cl(-) substitution. CONCLUSIONS In murine duodenum, Dra Cl(-)/HCO(3)(-) exchange is concentrated in the lower crypt-villus axis where it is subject to Cftr regulation. Dra activity contributes most basal HCO(3)(-) secretion and approximately 50% of cAMP-stimulated HCO(3)(-) secretion. Dra Cl(-)/HCO(3)(-) exchange should be considered in efforts to normalize HCO(3)(-) secretion in duodenal disorders such as ulcer disease and cystic fibrosis.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2010

Lactobacillus acidophilus stimulates the expression of SLC26A3 via a transcriptional mechanism

Geetu Raheja; Varsha Singh; Ke Ma; Redouane Boumendjel; Alip Borthakur; Ravinder K. Gill; Seema Saksena; Waddah A. Alrefai; Krishnamurthy Ramaswamy; Pradeep K. Dudeja

Clinical efficacy of probiotics in treating various forms of diarrhea has been clearly established. However, mechanisms underlying antidiarrheal effects of probiotics are not completely defined. Diarrhea is caused either by decreased absorption or increased secretion of electrolytes and solutes in the intestine. In this regard, the electroneutral absorption of two major electrolytes, Na(+) and Cl(-), occurs mainly through the coupled operation of Na(+)/H(+) exchangers and Cl(-)/OH(-) exchangers. Previous studies from our laboratory have shown that Lactobacillus acidophilus (LA) acutely stimulated Cl(-)/OH(-) exchange activity via an increase in the surface levels of the apical anion exchanger SLC26A3 (DRA). However, whether probiotics influence SLC26A3 expression and promoter activity has not been examined. The present studies were, therefore, undertaken to investigate the long-term effects of LA on SLC26A3 expression and promoter activity. Treatment of Caco-2 cells with LA for 6-24 h resulted in a significant increase in Cl(-)/OH(-) exchange activity. DRA mRNA levels were also significantly elevated in response to LA treatment starting as early as 8 h. Additionally, the promoter activity of DRA was increased by more than twofold following 8 h LA treatment of Caco-2 cells. Similar to the in vitro studies, in vivo studies using mice gavaged with LA also showed significantly increased DRA mRNA ( approximately 4-fold) and protein expression in the colonic regions as assessed by Western blot analysis and immunofluorescence. In conclusion, increase in DRA promoter activity and expression may contribute to the upregulation of intestinal electrolyte absorption and might underlie the potential antidiarrheal effects of LA.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2012

A novel nutrient sensing mechanism underlies substrate-induced regulation of monocarboxylate transporter-1

Alip Borthakur; Shubha Priyamvada; Anoop Kumar; Arivarasu A. Natarajan; Ravinder K. Gill; Waddah A. Alrefai; Pradeep K. Dudeja

Monocarboxylate transporter isoform-1 (MCT1) plays an important role in the absorption of short-chain fatty acids (SCFAs) in the colon. Butyrate, a major SCFA, serves as the primary energy source for the colonic mucosa, maintains epithelial integrity, and ameliorates intestinal inflammation. Previous studies have shown substrate (butyrate)-induced upregulation of MCT1 expression and function via transcriptional mechanisms. The present studies provide evidence that short-term MCT1 regulation by substrates could be mediated via a novel nutrient sensing mechanism. Short-term regulation of MCT1 by butyrate was examined in vitro in human intestinal C2BBe1 and rat intestinal IEC-6 cells and ex vivo in rat intestinal mucosa. Effects of pectin feeding on MCT1, in vivo, were determined in rat model. Butyrate treatment (30-120 min) of C2BBe1 cells increased MCT1 function {p-(chloromercuri) benzene sulfonate (PCMBS)-sensitive [(14)C]butyrate uptake} in a pertussis toxin-sensitive manner. The effects were associated with decreased intracellular cAMP levels, increased V(max) of butyrate uptake, and GPR109A-dependent increase in apical membrane MCT1 level. Nicotinic acid, an agonist for the SCFA receptor GPR109A, also increased MCT1 function and decreased intracellular cAMP. Pectin feeding increased apical membrane MCT1 levels and nicotinate-induced transepithelial butyrate flux in rat colon. Our data provide strong evidence for substrate-induced enhancement of MCT1 surface expression and function via a novel nutrient sensing mechanism involving GPR109A as a SCFA sensor.


Digestive Diseases and Sciences | 2007

Taurodeoxycholate Modulates Apical Cl−/OH− Exchange Activity in Caco2 Cells

Waddah A. Alrefai; Seema Saksena; Sangeeta Tyagi; Ravinder K. Gill; Krishnamurthy Ramaswamy; Pradeep K. Dudeja

Bile acid malabsorption has been shown to be associated with diarrhea in cases such as ileal resection Crohn’s disease of the ileum, and radiation enteritis. The mechanisms of bile acid-induced diarrhea are not fully understood. Although the induction of colonic chloride secretion in response to bile acids has been extensively investigated, to date the direct effect of bile acids on intestinal chloride absorption has not been well defined. Therefore, the current studies were undertaken to investigate the effect of bile acids on the apical Cl−/OH− exchange process utilizing Caco2 monolayers as an in vitro cellular model. Cl−/OH− exchange activity was measured as DIDS-sensitive pH gradient-driven 36Cl uptake. The results are summarized as follows: (i) short-term exposure (20 min) of Caco2 cells to taurodeoxycholate (TDC; 200 μM) and glycochenodeoxycholate (GCDC; 200 μM) acids significantly inhibited apical Cl−/OH− exchange (by ∼60–70%); (ii) the Ca2+ chelator BAPTA-AM blocked the inhibition by TDC; (iii) the reduction in Cl−/OH− exchange by TDC was reversed by the PKC inhibitor, chelerythrine chloride; (iv) functional and inhibitor studies indicated that TDC induced inhibition of Cl−/OH− exchange was mediated via the activation of the PKCβI isoform; (v) the effect of TDC on apical Cl−/OH− exchange was completely blocked by the PI3 kinase inhibitor LY294002 (5 μM); and (vi) the PKA inhibitor, RpcAMP, had no effect on TDC induced inhibition of Cl−/OH− exchange. In conclusion, our studies provide direct evidence for inhibition of human intestinal apical Cl−/OH− exchange activity by bile acids via Ca2+-, PI3 kinase-, and PKCβI-dependent pathways in Caco2 cells.

Collaboration


Dive into the Ravinder K. Gill's collaboration.

Top Co-Authors

Avatar

Pradeep K. Dudeja

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Waddah A. Alrefai

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Seema Saksena

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Anoop Kumar

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Krishnamurthy Ramaswamy

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Sangeeta Tyagi

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Alip Borthakur

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Shubha Priyamvada

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Pooja Malhotra

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Amika Singla

University of Illinois at Chicago

View shared research outputs
Researchain Logo
Decentralizing Knowledge