Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Raviraj Nataraj is active.

Publication


Featured researches published by Raviraj Nataraj.


Journal of Neuroengineering and Rehabilitation | 2012

Comparing joint kinematics and center of mass acceleration as feedback for control of standing balance by functional neuromuscular stimulation

Raviraj Nataraj; Musa L. Audu

BackgroundThe purpose of this study was to determine the comparative effectiveness of feedback control systems for maintaining standing balance based on joint kinematics or total body center of mass (COM) acceleration, and assess their clinical practicality for standing neuroprostheses after spinal cord injury (SCI).MethodsIn simulation, controller performance was measured according to the upper extremity effort required to stabilize a three-dimensional model of bipedal standing against a variety of postural disturbances. Three cases were investigated: proportional-derivative control based on joint kinematics alone, COM acceleration feedback alone, and combined joint kinematics and COM acceleration feedback. Additionally, pilot data was collected during external perturbations of an individual with SCI standing with functional neuromuscular stimulation (FNS), and the resulting joint kinematics and COM acceleration data was analyzed.ResultsCompared to the baseline case of maximal constant muscle excitations, the three control systems reduced the mean upper extremity loading by 51%, 43% and 56%, respectively against external force-pulse perturbations. Controller robustness was defined as the degradation in performance with increasing levels of input errors expected with clinical deployment of sensor-based feedback. At error levels typical for body-mounted inertial sensors, performance degradation due to sensor noise and placement were negligible. However, at typical tracking error levels, performance could degrade as much as 86% for joint kinematics feedback and 35% for COM acceleration feedback. Pilot data indicated that COM acceleration could be estimated with a few well-placed sensors and efficiently captures information related to movement synergies observed during perturbed bipedal standing following SCI.ConclusionsOverall, COM acceleration feedback may be a more feasible solution for control of standing with FNS given its superior robustness and small number of inputs required.


IEEE Transactions on Neural Systems and Rehabilitation Engineering | 2010

Comprehensive Joint Feedback Control for Standing by Functional Neuromuscular Stimulation—A Simulation Study

Raviraj Nataraj; Musa L. Audu; Robert F. Kirsch

Previous investigations of feedback control of standing after spinal cord injury (SCI) using functional neuromuscular stimulation (FNS) have primarily targeted individual joints. This study assesses the potential efficacy of comprehensive (trunk, hips, knees, and ankles) joint feedback control against postural disturbances using a bipedal, 3-D computer model of SCI stance. Proportional-derivative feedback drove an artificial neural network trained to produce muscle excitation patterns consistent with maximal joint stiffness values achievable about neutral stance given typical SCI muscle properties. Feedback gains were optimized to minimize upper extremity (UE) loading required to stabilize against disturbances. Compared to the baseline case of maximum constant muscle excitations used clinically, the controller reduced UE loading by 55% in resisting external force perturbations and by 84% during simulated one-arm functional tasks. Performance was most sensitive to inaccurate measurements of ankle plantar/dorsiflexion position and hip ab/adduction velocity feedback. In conclusion, comprehensive joint feedback demonstrates potential to markedly improve FNS standing function. However, alternative control structures capable of effective performance with fewer sensor-based feedback parameters may better facilitate clinical usage.


IEEE Transactions on Biomedical Engineering | 2013

Center of Mass Acceleration Feedback Control of Standing Balance by Functional Neuromuscular Stimulation Against External Postural Perturbations

Raviraj Nataraj; Musa L. Audu

This study investigated the use of center of mass (COM) acceleration feedback for improving performance of a functional neuromuscular stimulation control system to restore standing function to a subject with complete, thoracic-level spinal cord injury. The approach for linearly relating changes in muscle stimulation to changes in COM acceleration was verified experimentally and subsequently produced data to create an input-output map driven by sensor feedback. The feedback gains were systematically tuned to reduce upper extremity (UE) loads applied to an instrumented support device while resisting external postural disturbances. Total body COM acceleration was accurately estimated (>;89% variance explained) using 3-D outputs of two accelerometers mounted on the pelvis and torso. Compared to constant muscle stimulation employed clinically, feedback control of stimulation reduced UE loading by 33%. COM acceleration feedback is advantageous in constructing a standing neuroprosthesis since it provides the basis for a comprehensive control synergy about a global, dynamic variable and requires minimal instrumentation. Future work should include tuning and testing the feedback control system during functional reaching activity that is more indicative of activities of daily living.


Journal of Rehabilitation Research and Development | 2012

Center of mass acceleration feedback control of functional neuromuscular stimulation for standing in presence of internal postural perturbations

Raviraj Nataraj; Musa L. Audu

This study determined the feasibility and performance of center of mass (COM) acceleration feedback control of a neuroprosthesis utilizing functional neuromuscular stimulation (FNS) to restore standing balance to a single subject paralyzed by a motor and sensory complete, thoracic-level spinal cord injury. An artificial neural network (ANN) was created to map gain-modulated changes in total body COM acceleration estimated from body-mounted sensors to optimal changes in stimulation required to maintain standing. Feedback gains were systematically tuned to minimize the upper-limb (UL) loads applied by the subject to an instrumented support device during internally generated postural perturbations produced by volitional reaching and object manipulation. Total body COM acceleration was accurately estimated (>90% variance explained) from 2 three-dimensional (3-D) accelerometers mounted on the pelvis and torso. Compared with constant muscle stimulation employed clinically, COM acceleration feedback control of stimulation improved standing performance by reducing the UL loading required to resist internal postural disturbances by 27%. This case study suggests that COM acceleration feedback could potentially be advantageous in a standing neuroprosthesis since it can be implemented with only a few feedback parameters and requires minimal instrumentation for comprehensive 3-D control of dynamic standing function.


Journal of Rehabilitation Research and Development | 2012

Center of Mass Acceleration Feedback Control for Standing by Functional Neuromuscular Stimulation: A Simulation Study

Raviraj Nataraj; Musa L. Audu; Robert F. Kirsch

The potential efficacy of total body center of mass (COM) acceleration for feedback control of standing balance by functional neuromuscular stimulation (FNS) following spinal cord injury (SCI) was investigated. COM acceleration may be a viable alternative to conventional joint kinematics because of its rapid responsiveness, focal representation of COM dynamics, and ease of measurement. A computational procedure was developed using an anatomically realistic, three-dimensional, bipedal biomechanical model to determine optimal patterns of muscle excitations to produce targeted effects upon COM acceleration from erect stance. The procedure was verified with electromyographic data collected from standing nondisabled subjects undergoing systematic perturbations. Using 16 muscle groups targeted by existing implantable neuroprostheses, we generated data to train an artificial neural network (ANN)-based controller in simulation. During forward simulations, proportional feedback of COM acceleration drove the ANN to produce muscle excitation patterns countering the effects of applied perturbations. Feedback gains were optimized to minimize upper-limb (UL) loading required to stabilize against disturbances. Compared with the clinical case of maximum constant excitation, the controller reduced UL loading by 43% in resisting external perturbations and by 51% during simulated one-arm reaching. Future work includes performance assessment against expected measurement errors and development of user-specific control systems.


Journal of Biomechanics | 2011

Posture shifting after spinal cord injury using functional neuromuscular stimulation—A computer simulation study

Musa L. Audu; Raviraj Nataraj; Steven J. Gartman

The ability for individuals with spinal cord injury (SCI) to affect changes in standing posture with functional neuromuscular stimulation (FNS) was explored using an anatomically inspired musculoskeletal model of the trunk, pelvis and lower extremities (LE). The model tracked trajectories for anteriorly and laterally shifting movements away from erect stance. Forces were applied to both shoulders to represent upper extremity (UE) interaction with an assistive device (e.g., a walker). The muscle excitations required to execute shifting maneuvers with UE forces <10% body-weight (BW) were determined via dynamic optimization. Nine muscle sets were examined to maximize control of shifting posture. Inclusion of the Psoas and External Obliques bilaterally resulted in the least relative UE effort (0.119, mean UE effort = 45.3N ≡ 5.4% BW) for anterior shifting. For lateral shifting, the set including the Psoas and Latissimus Dorsi bilaterally yielded the best performance (0.025, mean UE effort = 27.8 N ≡ 3.3% BW). However, adding the Psoas alone bilaterally competed favorably in overall best performance across both maneuvers. This study suggests suitable activation to specific muscles of the trunk and LE can enable individuals with SCI to alter their standing postures with minimal upper-body effort and subsequently increase reach and standing work volume.


Journal of Rehabilitation Research and Development | 2014

Posture-dependent control of stimulation in standing neuroprosthesis: Simulation feasibility study

Musa L. Audu; Steven J. Gartman; Raviraj Nataraj

We used a three-dimensional biomechanical model of human standing to test the feasibility of feed-forward control systems that vary stimulation to paralyzed muscles based on the users posture and desire to effect a postural change. The controllers examined were (1) constant baseline stimulation, which represented muscle activation required to maintain erect standing, and (2) posture follower, which varied muscle activation as a function of the location of the projection of whole-body center of mass on the base of support. Posture-dependent control of stimulation demonstrated significant benefits over open-loop stimulation. Posture follower reduced upper-limb (UL) effort by an average of 50% compared with UL effort alone and by an average of 34% compared with baseline stimulation. On the other hand, reduction in UL effort was an average of 32% when using baseline stimulation. Compared with using UL effort alone, both controllers result in more than a 50% reduction in effort. The results of this study indicate that control systems that facilitate user-driven, task-dependent postures can be more effective and efficient than conventional open-loop stimulation. Also, they obviate the need for complicated posture-setting devices such as switches and joysticks. Functional implications include the potential to expand reachable workspace and better preparation for anticipated disturbances that could challenge balance over existing neuroprostheses for standing.


Applied Bionics and Biomechanics | 2014

Modified Newton-Raphson method to tune feedback gains of control system for standing by functional neuromuscular stimulation following spinal cord injury.

Raviraj Nataraj; Musa L. Audu

BACKGROUND Functional neuromuscular stimulation (FNS) can restore standing capabilities following spinal cord injury. Feedback control of these systems can optimize performance by reducing the required upper extremity support. However, tuning these control systems can be intensive and clinically inconvenient. OBJECTIVE This case study investigated a clinical method to efficiently tune feedback gains for a control system utilizing feedback of total body center of mass acceleration to modulate stimulation levels to targeted paralyzed musculature of the lower extremities and trunk. METHODS Gains for this control system were tuned to minimize the stabilization loading by one arm against internal postural perturbations volitionally-generated during manipulation of an object using the other arm. An algorithm based on a modified form of the Newton-Raphson method was employed to find the optimal feedback gains with lower subject effort than that to determine the original tuning curves. RESULTS This method accurately (<6.2% error) approximated the optimal gains with 70% fewer manipulations by the subject. CONCLUSIONS These results suggest that optimal feedback gains for the specific FNS control system can be determined systematically with considerably less effort than heuristic gain tuning. This demonstrates the potential for devising simple, convenient methods for effective system re-tuning during clinical usage.


Medical Engineering & Physics | 2017

Restoring standing capabilities with feedback control of functional neuromuscular stimulation following spinal cord injury

Raviraj Nataraj; Musa L. Audu

This paper reviews the field of feedback control for neuroprosthesis systems that restore advanced standing function to individuals with spinal cord injury. Investigations into closed-loop control of standing by functional neuromuscular stimulation (FNS) have spanned three decades. The ultimate goal for FNS standing control systems is to facilitate hands free standing and enabling the user to perform manual functions at self-selected leaning positions. However, most clinical systems for home usage currently only provide basic upright standing using preprogrammed stimulation patterns. To date, online modulation of stimulation to produce advanced standing functions such as balance against postural disturbances or the ability to assume leaning postures have been limited to simulation and laboratory investigations. While great technological advances have been made in biomechanical sensing and interfaces for neuromuscular stimulation, further progress is still required for finer motor control by FNS. Another major challenge is the development of sophisticated control schemes that produce the necessary postural adjustments, adapt against accelerating muscle fatigue, and consider volitional actions of the intact upper-body of the user. Model-based development for novel control schemes are proven and sensible approaches to prototype and test the basic operating efficacy of potentially complex and multi-faceted control systems. The major considerations for further innovation of such systems are summarized in this paper prior to describing the evolution of closed-loop FNS control of standing from previous works. Finally, necessary emerging technologies to for implementing FNS feedback control systems for standing are identified. These technological advancements include novel electrodes that more completely and selectively activate paralyzed musculature and implantable sensors and stimulation modules for flexible neuroprosthesis system deployment.


Medical & Biological Engineering & Computing | 2016

Simulating the restoration of standing balance at leaning postures with functional neuromuscular stimulation following spinal cord injury

Raviraj Nataraj; Musa L. Audu

Collaboration


Dive into the Raviraj Nataraj's collaboration.

Top Co-Authors

Avatar

Musa L. Audu

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Robert F. Kirsch

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Steven J. Gartman

Case Western Reserve University

View shared research outputs
Researchain Logo
Decentralizing Knowledge