Rawda M. Okasha
University of Winnipeg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rawda M. Okasha.
Macromolecular Rapid Communications | 2002
Alaa S. Abd-El-Aziz; Erin K. Todd; Rawda M. Okasha; Tabitha E. Wood
Polymers containing neutral and cationic iron moieties within and pendent to their backbones were prepared. The redox properties of the neutral and cationic iron centers were examined using cyclic voltammetry. Photolysis of the organometallic polymers led to decoordination of the cationic cyclopentadienyliron moieties from the polymer backbones. Glass transition temperatures of the resulting ferrocene-based polymers were lower than those of the mixed neutral/cationic polymers.
Molecules | 2017
Rawda M. Okasha; Fawzia Faleh Al-blewi; Tarek H. Afifi; Arshi Naqvi; Ahmed M. Fouda; Al-Anood M. Al-Dies; Ahmed M. El-Agrody
A series of novel 4H-benzo[h]chromenes 4, 6–11, 13, 14; 7H-benzo[h]chromeno[2,3-d]pyrimidines 15–18, 20, and 14H-benzo[h]chromeno[3,2-e][1,2,4]triazolo[1,5-c]pyrimidine derivatives 19a–e, 24 was prepared. The structures of the synthesized compounds were characterized on the basis of their spectral data. Some of the target compounds were examined for their antiproliferative activity against three cell lines; breast carcinoma (MCF-7), human colon carcinoma (HCT-116) and hepatocellular carcinoma (HepG-2). The cytotoxic behavior has been tested using MTT assay and the inhibitory activity was referenced to three standard anticancer drugs: vinblastine, colchicine and doxorubicin. The bioassays demonstrated that some of the new compounds exerted remarkable inhibitory effects as compared to the standard drugs on the growth of the three tested human tumor cell lines. The structure–activity relationships (SAR) study highlights that the antitumor activity of the target compounds was significantly affected by the lipophilicity of the substituent at 2- or 3- and fused rings at the 2,3-positions.
Molecules | 2016
Rawda M. Okasha; Fawzia Albalawi; Tarek H. Afifi; Ahmed M. Fouda; Al-Anood M. Al-Dies; Ahmed M. El-Agrody
Three new series of chromene molecules have been synthesized in order to explore their antimicrobial activity. The series encompass 2-substituted 14-(4-halophenyl)-12-methoxy-14H-benzo[h]chromeno[3,2-e][1,2,4]-triazolo[1,5-c]pyrimidines 7a–o, 9-benzylideneamino-7-(4-halo-phenyl)-5-methoxy-8-imino-7H-benzo-[h]chromeno[2,3-d]pyrimidines 8a–b and 3-ethoxycarbonyl-14-(4-halophenyl)-12-methoxy-14H-benzo-[h]chromeno[3,2-e][1,2,4]triazolo[1,5-c]pyrimidine-2-one derivatives 12a–b. The structure of these novel compounds were confirmed using IR, 1H- and 13C-NMR as well as MS spectroscopy. The new compounds were evaluated in vitro for their antimicrobial activity and it was demonstrated that 7H-benzochromenopyrimidine and derivatives of 14H-benzochromenotriazolopyrimidine exhibited the most promising antibacterial activities compared to the reference antimicrobial agents. The structure activity relationship (SAR) studies of the target compounds agreed with the in vitro essays and confirmed higher potent antimicrobial activity against some of the tested microorganisms.
Polymers | 2017
Saleh A. Ahmed; Rawda M. Okasha; Khalid S. Khairou; Tarek H. Afifi; Abdel-Aleam Mohamed; Alaa S. Abd-El-Aziz
A new class of thermochromic polynorbornene with pendent spiropyran moieties has been synthesized. Functionalization of norbornene monomers with spirobenzopyran moieties has been achieved using Steglich esterification. These new monomeric materials were polymerized via Ring Opening Metathesis Polymerization (ROMP). In spite of their poor solubility, polynorbornenes with spirobenzopyran exhibited thermochromic behavior due to the conversion of their closed spiropyran moieties to the open merocyanine form. Moreover, these polymers displayed bathochromic shifts in their optical response, which was attributed to the J-aggregation of the attached merocyanine moieties that were associated with their high concentration in the polymeric chain. The surface of the obtained polymers was exposed to atmospheric pressure air Dielectric Barrier Discharge (DBD) plasma system, which resulted in the reduction of the surface porosity and converted some surface area into completely non-porous regions. Moreover, the plasma system created some areas with highly ordered J-aggregates of the merocyanine form in thread-like structures. This modification of the polymers’ morphology may alter their applications and allow for these materials to be potential candidates for new applications, such as non-porous membranes for reverse osmosis, nanofiltration, or molecular separation in the gas phase.
Excli Journal | 2017
Tarek H. Afifi; Rawda M. Okasha; Hany E.A. Ahmed; Janez Ilaš; Tarek M. Saleh; Alaa S. Abd-El-Aziz
The design of novel materials with significant biological properties is a main target in drug design research. Chromene compounds represent an interesting medicinal scaffold in drug replacement systems. This report illustrates a successful synthesis and characterization of two novel series of chromene compounds using multi-component reactions. The synthesis of the first example of azo chromophores containing chromene moieties has also been established using the same methodology. The antimicrobial activity of the new molecules has been tested against seven human pathogens including two Gm+ve, two Gm-ve bacteria, and four fungi, and the results of the inhibition zones with minimum inhibitory concentrations were reported as compared to reference drugs. All the designed compounds showed significant potent antimicrobial activities, among of them, four potent compounds 4b, 4c, 13e, and 13i showed promising MIC from 0.007 to 3.9 µg/mL. In addition, antiproliferative analysis against three target cell lines was examined for the novel compounds. Compounds 4a, 4b, 4c, and 7c possessed significant antiproliferative activity against three cell lines with an IC50 of 0.3 to 2 µg/mL. Apoptotic analysis was performed for the most potent compounds via caspase enzyme activity assays as a potential mechanism for their antiproliferative effects. Finally, the computational 2D QSAR and docking simulations were accomplished for structure-activity relationship analyses.
Molecules | 2018
Safaa El-Taweel; Arwa Al-Ahmadi; Omaima Alhaddad; Rawda M. Okasha
Cationic cyclopentadienyliron (CpFe+) is one of the most fruitful organometallic moieties that has been utilized to mediate the facile synthesis of a massive number of macromolecules. However, the ability of this compound to function as a nucleating agent to improve other macromolecule properties has not been explored. This report scrutinizes the influence of the cationic complex as a novel nucleating agent on the spherulitic morphology, crystal structure, and isothermal and non-isothermal crystallization behavior of the Poly(3-hydroxybutyrate) (PHB) bacterial origin. The incorporation of the CpFe+ into the PHB materials caused a significant increase in its spherulitic numbers with a remarkable reduction in the spherulitic sizes. Unlike other nucleating agents, the SEM imageries exhibited a good dispersion without forming agglomerates of the CpFe+ moieties in the PHB matrix. Moreover, according to the FTIR analysis, the cationic organoiron complex has a strong interaction with the PHB polymeric chains via the coordination with its ester carbonyl. Yet, the XRD results revealed that this incorporation had no significant effect on the PHB crystalline structure. Though the CpFe+ had no effect on the polymer’s crystal structure, it accelerated outstandingly the melt crystallization of the PHB. Meanwhile, the crystallization half-times (t0.5) of the PHB decreased dramatically with the addition of the CpFe+. The isothermal and non-isothermal crystallization processes were successfully described using the Avrami model and a modified Avrami model, as well as a combination of the Avrami and Ozawa methods. Finally, the effective activation energy of the PHB/CpFe+ nanocomposites was much lower than those of their pure counterparts, which supported the heterogeneous nucleation mechanism with the organometallic moieties, indicating that the CpFe+ is a superior nucleating agent for this class of polymer.
International Journal of Molecular Sciences | 2018
Eman Ismail; Aliyah Saqer; Eman Assirey; Arshi Naqvi; Rawda M. Okasha
A facile bottom-up “green” synthetic route of gold nanoparticles (Au NPs) is described, using a leaf extract of the Malvaceae plant Corchorus olitorius as a reducing and stabilizing agent. The size and shape of the obtained nanoparticles were modulated by varying the amounts of the metal salt and the broth extract in the reaction medium. Only one hour was required for the complete conversion to Au NPs, suggesting that the reaction rate was higher or comparable to those of nanoparticles synthesized by chemical methods. The obtained nanoparticles were characterized by UV–visible spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, and thermal gravimetric analysis (TGA). While infrared spectroscopy was employed to characterize the various functional groups in the organic layer that stabilized the particles, TEM images were used to optimize the conditions for NPs growth. A low concentration of the C. olitorius extract yielded mixed triangular and hexagonal shapes; in contrast, quasi-spherical shapes of Au NPs with an average size of 37–50 nm were obtained at a higher extract broth concentration. The Au NPs displayed Surface Plasmon Resonance (SPR) bands at 535 nm. An in vitro cytotoxic assay of the biocompatible Au NPs revealed a strong cytotoxic activity in three human cancer cell lines, namely, colon carcinoma HCT-116, hepatocellular carcinoma HepG-2, and breast adenocarcinoma MCF-7. In-silico bioactivity, drug-likeness, and ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) predictions were conducted in order to examine the pharmacokinetic behavior of the compounds present in the C. olitorius extract.
Journal of Polymer Science Part A | 2001
Alaa S. Abd-El-Aziz; Leslie J. May; J. A. Hurd; Rawda M. Okasha
Macromolecules | 2005
Alaa S. Abd-El-Aziz; Erin K. Todd; Rawda M. Okasha; Patrick O. Shipman; Tabitha E. Wood
Macromolecular Chemistry and Physics | 2003
Alaa S. Abd-El-Aziz; Rawda M. Okasha; Tarek H. Afifi; Erin K. Todd