Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ray F. Evert is active.

Publication


Featured researches published by Ray F. Evert.


Planta | 1977

Distribution and structure of the plasmodesmata in mesophyll and bundle-sheath cells of Zea mays L.

Ray F. Evert; Walter Eschrich; W. Heyser

In leaf blades of Zea mays L. plasmodesmata between mesophyll cells are aggregated in numerous thickened portions of the walls. The plasmodesmata are unbranched and all are characterized by the presence of electron-dense structures, called sphincters by us, near both ends of the plasmodesmatal canal. The sphincters surround the desmotubule and occlude the cytoplasmic annulus where they occur. Plasmodesmata between mesophyll and bundle-sheath cells are aggregated in primary pit-fields and are constricted by a wide suberin lamella on the sheath-cell side of the wall. Each plasmodesma contains a sphincter on the mesophyll-cell side of the wall. The outer tangential and radial walls of the sheath cells exhibit a continuous suberin lamella. However, on the inner tangential wall only the sites of plasmodesmatal aggregates are consistently suberized. Apparently the movement of photosynthetic intermediates between mesophyll and sheath cells is restricted largely or entirely to the plasmodesmata (symplastic pathway) and transpirational water movement to the cell walls (apoplastic pathway).


Planta | 1978

Leaf structure in relation to solute transport and phloem loading in Zea mays L.

Ray F. Evert; Walter Eschrich; Wolfgang Heyser

Small and intermediate (longitudinal) vascular bundles of the Zea mays leaf are surrounded by chlorenchymatous bundle sheaths and consist of one or two vessels, variable numbers of vascular parenchyma cells, and two or more sieve tubes some of which are associated with companion cells. Sieve tubes not associated with companion cells have relatively thick walls and commonly are in direct contact with the vessels. The thick-walled sieve tubes have abundant cytoplasmic connections with contiguous vascular parenchyma cells; in contrast, connections between vascular parenchyma cells and thin-walled sieve tubes are rare. Connections are abundant, however, between the thin-walled sieve tubes and their companion cells; the latter have few connections with the vascular parenchyma cells. Plasmolytic studies on leaves of plants taken directly from lighted growth chambers gave osmotic potential values of about-18 bars for the companion cells and thin-walled sieve tubes (the companion cell-sieve tube complexes) and about-11 bars for the vascular parenchyma cells. Judging from the distribution of connections between various cell types of the vascular bundles and from the osmotic potential values of those cell types, it appears that sugar is actively accumulated from the apoplast by the companion cell-sieve tube complex, probably across the plasmalemma of the companion cell. The thick-walled sieve tubes, with their close spatial association with the vessels and possession of plasmalemma tubules, may play a role in retrieval of solutes entering the leaf apoplast in the transpiration stream. The transverse veins have chlorenchymatous bundle sheaths and commonly contain a single vessel and sieve tube. Parenchymatic elements may or may not be present. Like the thick-walled sieve tubes of the longitudinal bundles, the sieve tubes of the transverse veins have plasmalemma tubules, indicating that they too may play a role in retrieval of solutes entering the leaf apoplast in the transpiration stream.


The Plant Cell | 1996

Modification of a Specific Class of Plasmodesmata and Loss of Sucrose Export Ability in the sucrose export defective1 Maize Mutant.

William A. Russin; Ray F. Evert; Peter J. Vanderveer; Thomas D. Sharkey; Steven P. Briggs

We report on the export capability and structural and ultrastructural characteristics of leaves of the sucrose export defective1 (sed1; formerly called sut1) maize mutant. Whole-leaf autoradiography was combined with light and transmission electron microscopy to correlate leaf structure with differences in export capacity in both wild-type and sed1 plants. Tips of sed1 blades had abnormal accumulations of starch and anthocyanin and distorted vascular tissues in the minor veins, and they did not export sucrose. Bases of sed1 blades were structurally identical to those of the wild type and did export sucrose. Electron microscopy revealed that only the plasmodesmata at the bundle sheath-vascular parenchyma cell interface in sed1 minor veins were structurally modified. Aberrant plasmodesmal structure at this critical interface results in a symplastic interruption and a lack of phloem-loading capability. These results clarify the pathway followed by photosynthates, the pivotal role of the plasmodesmata at the bundle sheath-vascular parenchyma cell interface, and the role of the vascular parenchyma cells in phloem loading.


International Journal of Plant Sciences | 1996

Anatomical and Ultrastructural Changes Associated with Sink-to-Source Transition in Developing Maize Leaves

Ray F. Evert; William A. Russin; Artemios M. Bosabalidis

We studied the anatomical and ultrastructural changes accompanying sink-to-source transition in developing maize (Zea mays L. cv. W273) leaves, in which sink, transition, and source regions had been identified by whole-leaf autoradiography. In the leaves examined, a complete structural gradient existed from nonimporting to importing regions of the blade. Although all components, except metaxylem elements. of the large (transport) bundles reach maturity before their counterparts in intermediate and small (loading) bundles, the final events in structural maturation are uniform for all bundle types across the blade. Among the very last structures to mature are the plasmodesmata at the interfaces between mesophyll cells and between mesophyll cells and bundle sheath cells. Maturation of the plasmodesmata coincides with maturation of the thick-walled sieve tubes, the last components of the vascular bundles to mature. Significantly, the vasculature reaches structural maturity in advance of cessation of import, and maturation of bundles involved with phloem loading is not closely correlated with initiation of export from the blade. Deposition of suberin lamellae in the walls of the bundle sheath cells coincides with the deposition of secondary walls in the metaxylem vessels. It is suggested that a primary role of the suberin lamellae may be to prevent leakage of sucrose from the bundles.


Planta | 1985

Leaf vasculature in Zea mays L.

S. H. Russell; Ray F. Evert

The vascular system of the Zea mays L. leaf consists of longitudinal strands interconnected by transverse bundles. In any given transverse section the longitudinal strands may be divided into three types of bundle according to size and structure: small, intermediate, large. Virtually all of the longitudinal strands intergrade structurally however, from one bundle type to another as they descend the leaf. For example, all of the strands having large-bundle anatomy appear distally as small bundles, which intergrade into intermediates and then large bundles as they descend the leaf. Only the large bundles and the intermediates that arise midway between them extend basipetally into the sheath and stem. Most of the remaining longitudinal strands of the blade do not enter the sheath but fuse with other strands above and in the region of the blade joint. Despite the marked decrease in number of longitudinal bundles at the base of the blade, both the total and mean cross-sectional areas of sieve tubes and tracheary elements increase as the bundles continuing into the sheath increase in size. Linear relationships exist between leaf width and total bundle number, and between cross-sectional area of vascular bundles and both total and mean cross-sectional areas of sieve tubes and tracheary elements.


Planta | 1983

Microautoradiographic studies of phloem loading and transport in the leaf of Zea mays L.

Eberhard Fritz; Ray F. Evert; Wolfgang Heyser

Microautoradiographs showed that [14C]sucrose taken up in the xylem of small and intermediate (longitudinal) vascular bundles of Zea mays leaf strips was quickly accumulated by vascular parenchyma cells abutting the vessels. The first sieve tubes to exhibit 14C-labeling during the [14C]sucrose experiments were thick-walled sieve tubes contiguous to the more heavily labeled vascular parenchyma cells. (These two cell types typically have numerous plasmodesmatal connections.) With increasing [14C]sucrose feeding periods, greater proportions of thick- and thin-walled sieve tubes became labeled, but few of the labeled thin-walled sieve tubes were associated with labeled companion cells. (Only the thin-walled sieve tubes are associated with companion cells.) When portions of leaf strips were exposed to 14CO2 for 5 min, the vascular parenchyma cells-regardless of their location in relation to the vessels or sieve tubes-were the most consistently labeled cells of small and intermediate bundles, and label (14C-photosynthate) appeared in a greater proportion of thin-walled sieve tubes than thick-walled sieve tubes. After a 5-min chase with 12CO2, the thin-walled sieve tubes were more heavily labeled than any other cell type of the leaf. After a 10-min chase with 12CO2, the thin-walled sieve tubes were even more heavily labeled. The companion cells generally were less heavily labeled than their associated thin-walled sieve tubes. Although all of the thick-walled sieve tubes were labeled in portions of leaf strips fed 14CO2 for 5 min and given a 10-min 12CO2 chase, only five of 72 vascular bundles below the 14CO2-exposed portions contained labeled thick-walled sieve tubes. Moreover, the few labeled thick-walledsieve tubes of the “transport region” always abutted 14C-labeled vascular parenchyma cells. The results of this study indicate that (1) the vascular parenchyma cells are able to retrieve at least sucrose from the vessels and transfer it to the thick-walled sieve tubes, (2) the thick-walled sieve tubes are not involved in long-distance transport, and (3) the thin-walled sieve tubes are capable themselves of accumulating sucrose and photosynthates from the apoplast, without the companion cells serving as intermediary cells.


American Journal of Botany | 1969

LIGHT MICROSCOPE INVESTIGATION OF SIEVE-ELEMENT ONTOGENY AND STRUCTURE IN ULMUS AMERICANA

Ray F. Evert; C. Milton Tucker; Jerry D. Davis; Bharati P. Deshpande

SummaryDuring advanced stages of sieve-element differentiation inUlmus americana L., dispersal of the P-protein (slime) bodies results in formation of a peripheral network of strands consisting of aggregates of P-protein components having a striated, fibrillar appearance. The tonoplast is present throughout the period of P-protein body dispersal. Perforation of the sieve plates is initiated during early stages of P-protein body dispersal.Small P-protein bodies consist of tubular components, most of which measure about 180 Å in diameter. With increase in size of the P-protein bodies narrower components appear. At the time of initiation of P-protein body dispersal, most of the components comprising the bodies are of relatively narrow diameters (most 130–140 Å) and have a striated, fibrillar appearance. Both wide and narrow P-protein components are present throughout the period of sieve-element differentiation and in the mature cell as well, and a complete intergradation in size and appearance exists between the two extremes. Both extremes of P-protein component have a similar substructure: an electron-transparent lumen and an electronopaque wall composed of subunits, apparently in helical arrangement. The distribution of P protein in mature sieve elements was quite variable.The parietal layer of cytoplasm in matureUlmus sieve elements consists of plasmalemma, endoplasmic reticulum cisternae in two forms (as a complex network closely applied to the plasmalemma and in stacks along the wall), mitochondria, and plastids.


Planta | 1972

P-protein distribution in mature sieve elements of Cucurbita maxima

Ray F. Evert; Walter Eschrich; Susan E. Eichhorn

SummaryPortions of the hypocotyls of 16-day-old Cucurbita maxima plants, from which the cotyledons and first foliage leaves had been removed 2 days earlier, were fixed in glutaraldehyde and postfixed in osmium tetroxide for electron microscopy. In well over 90% of the mature sieve elements examined the P-protein was entirely parietal in distribution in both the lumina and sieve-plate pores. In addition to the parietal P-protein, the unoccluded sieve-plate pores were lined by narrow callose cylinders and the plasmalemma. Segments of endoplasmic reticulum also occurred along the margins of the pores.


Protoplasma | 1985

Free-space marker studies on the leaf ofZea mays L.

Ray F. Evert; C. E. J. Botha; Robert J. Mierzwa

SummaryTwo free-space marker procedures (Prussian blue and lanthanum nitrate) were employed to determine the pathway(s) followed by water and solutes in the transpiration stream after their introduction into the xylem of small and intermediate bundles, and the effectiveness of the suberin lamellae of the bundle-sheath cells as a barrier to the movement of tracer ions (Fe3+ and La3+). Judged from the distribution of Prussian-blue crystals (insoluble, crystalline deposits resulting from the precipitation of ferric ions by ferrocyanide anions) and lanthanum deposits, water and the tracer ions moved readily from the lumina of the vessels into the apoplast (cell wall continuum) of the phloem and bundle-sheath cells via portions of vessel primary walls not bearing lignified secondary wall thickenings. Prussian blue and lanthanum deposits were abundant on the bundlesheath cell side of the bundle sheath/mesophyll interface but few occurred on that of the mesophyll, indicating that the suberin lamella is an effective barrier to apoplastic movement of both ferric and lanthanum ions. The presence of Prussian-blue crystals and lanthanum deposits in the compound middle lamella of the radial wall of the bundle-sheath cells indicates that the compound middle lamella provides an apoplastic pathway for transpirational water from the xylem to the evaporating surfaces of the mesophyll and epidermal cells.


Planta | 1982

Studies on the leaf of Amaranthus retroflexus (Amaranthaceae): ultrastructure, plasmodesmatal frequency, and solute concentration in relation to phloem loading

David G. Fisher; Ray F. Evert

Both the mesophyll and bundle-sheath cells associated with the minor veins in the leaf of Amaranthus retroflexus L. contain abundant tubular endoplasmic reticulum, which is continuous between the two cell types via numerous plasmodesmata in their common walls. In bundle-sheath cells, the tubular endoplasmic reticulum forms an extensive network that permeates the cytoplasm, and is closely associated, if not continuous, with the delimiting membranes of the chloroplasts, mitochondria, and microbodies. Both the number and frequency of plasmodesmata between various cell types decrease markedly from the bundle-sheath — vascular-parenchyma cell interface to the sicve-tube member — companion-cell interface. For plants taken directly from lighted growth chambers, a stronger mannitol solution (1.4 M) was required to plasmolyze the companion cells and sieve-tube members than that (0.6 M) necessary to plasmolyze the mesophyll, bundle-sheath, and vascular-parenchyma cells. Placing plants in the dark for 48 h reduced the solute concentration in all cell types. Judging from the frequency of plasmodesmata between the various cell types of the vascular bundles, and from the solute concentrations of the various cell types, it appears that assimilates are actively accumulated by the sieve-tube — companion-cell complex from the apoplast.

Collaboration


Dive into the Ray F. Evert's collaboration.

Top Co-Authors

Avatar

Susan E. Eichhorn

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Andrea Olbrich

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William A. Russin

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Walter Eschrich

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Robert D. Warmbrodt

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Robert J. Mierzwa

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Peter H. Raven

Missouri Botanical Garden

View shared research outputs
Top Co-Authors

Avatar

Walter Eschrich

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Frank J. Alfieri

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge