Ray J. Morris
Australian Antarctic Division
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ray J. Morris.
Journal of Geophysical Research | 1994
G. Lu; A. D. Richmond; B. A. Emery; P. H. Reiff; O. de la Beaujardiere; F. J. Rich; W. F. Denig; H. W. Kroehl; Larry R. Lyons; J. M. Ruohoniemi; E. Friis-Christensen; H. J. Opgenoorth; M. A. L. Persson; R. P. Lepping; A. S. Rodger; T. Hughes; A. McEwin; S. Dennis; Ray J. Morris; G. B. Burns; L. Tomlinson
The assimilative mapping of ionospheric electrodynamics technique has been used to derive the large-scale high-latitude ionospheric convection patterns simultaneously in both northern and southern hemispheres during the period of January 27-29, 1992. When the interplanetary magnetic field (IMF) Bz component is negative, the convection patterns in the southern hemisphere are basically the mirror images of those in the northern hemisphere. The total cross-polar-cap potential drops in the two hemispheres are similar. When Bz is positive and |By| > Bz, the convection configurations are mainly determined by By and they may appear as normal “two-cell” patterns in both hemispheres much as one would expect under southward IMF conditions. However, there is a significant difference in the cross-polar-cap potential drop between the two hemispheres, with the potential drop in the southern (summer) hemisphere over 50% larger than that in the northern (winter) hemisphere. As the ratio of |By|/Bz decreases (less than one), the convection configuration in the two hemispheres may be significantly different, with reverse convection in the southern hemisphere and weak but disturbed convection in the northern hemisphere. By comparing the convection patterns with the corresponding spectrograms of precipitating particles, we interpret the convection patterns in terms of the concept of merging cells, lobe cells, and viscous cells. Estimates of the “merging cell” potential drops, that is, the potential ascribed to the opening of the dayside field lines, are usually comparable between the two hemispheres, as they should be. The “lobe cell” provides a potential between 8.5 and 26 k V and can differ greatly between hemispheres, as predicted. Lobe cells can be significant even for southward IMF, if |By| > |Bz|. To estimate the potential drop of the “viscous cells,” we assume that the low-latitude boundary layer is on closed field lines. We find that this potential drop varies from case to case, with a typical value of 10 kV. If the source of these cells is truly a viscous interaction at the flank of the magnetopause, the process is likely spatially and temporally varying rather than steady state.
Journal of Geophysical Research | 1993
Delores J. Knipp; B. A. Emery; A. D. Richmond; N. U. Crooker; M. R. Hairston; J. A. Cumnock; W. F. Denig; F. J. Rich; O. de la Beaujardiere; J. M. Ruohoniemi; A. S. Rodger; G. Crowley; B. H. Ahn; D. S. Evans; T. J. Fuller Rowell; E. Friis Christensen; Mike Lockwood; H. W. Kroehl; C. G. Maclennan; A. McEwin; R. J. Pellinen; Ray J. Morris; G. B. Burns; Vladimir O. Papitashvili; A. N. Zaitzev; Oleg Troshichev; Natsuo Sato; Peter R. Sutcliffe; L. Tomlinson
We analyze ionospheric convection patterns over the polar regions during the passage of an interplanetary magnetic cloud on January 14, 1988, when the interplanetary magnetic field (IMF) rotated slowly in direction and had a large amplitude. Using the assimilative mapping of ionospheric electrodynamics (AMIE) procedure, we combine simultaneous observations of ionospheric drifts and magnetic perturbations from many different instruments into consistent patterns of high-latitude electrodynamics, focusing on the period of northward IMF. By combining satellite data with ground-based observations, we have generated one of the most comprehensive data sets yet assembled and used it to produce convection maps for both hemispheres. We present evidence that a lobe convection cell was embedded within normal merging convection during a period when the IMF By and Bz components were large and positive. As the IMF became predominantly northward, a strong reversed convection pattern (afternoon-to-morning potential drop of around 100 kV) appeared in the southern (summer) polar cap, while convection in the northern (winter) hemisphere became weak and disordered with a dawn-to-dusk potential drop of the order of 30 kV. These patterns persisted for about 3 hours, until the IMF rotated significantly toward the west. We interpret this behavior in terms of a recently proposed merging model for northward IMF under solstice conditions, for which lobe field lines from the hemisphere tilted toward the Sun (summer hemisphere) drape over the dayside magnetosphere, producing reverse convection in the summer hemisphere and impeding direct contact between the solar wind and field lines connected to the winter polar cap. The positive IMF Bx component present at this time could have contributed to the observed hemispheric asymmetry. Reverse convection in the summer hemisphere broke down rapidly after the ratio |By/Bz| exceeded unity, while convection in the winter hemisphere strengthened. A dominant dawn-to-dusk potential drop was established in both hemispheres when the magnitude of By exceeded that of Bz, with potential drops of the order of 100 kV, even while Bz remained northward. The later transition to southward Bz produced a gradual intensification of the convection, but a greater qualitative change occurred at the transition through |By/Bz| = 1 than at the transition through Bz = 0. The various convection patterns we derive under northward IMF conditions illustrate all possibilities previously discussed in the literature: nearly single-cell and multicell, distorted and symmetric, ordered and unordered, and sunward and antisunward.
Journal of Geophysical Research | 1995
G. Lu; L. R. Lyons; P. H. Reiff; W. F. Denig; O. de la Beaujardiere; H. W. Kroehl; P. T. Newell; F. J. Rich; H. J. Opgenoorth; M. A. L. Persson; J. M. Ruohoniemi; E. Friis-Christensen; L. Tomlinson; Ray J. Morris; G. B. Burns; A. McEwin
The assimilative mapping of ionospheric electrodynamics (AMIE) technique has been used to estimate global distributions of high-latitude ionospheric convection and field-aligned current by combining data obtained nearly simultaneously both from ground and from space. Therefore, unlike the statistical patterns, the “snapshot” distributions derived by AMIE allow us to examine in more detail the distinctions between field-aligned current systems associated with separate magnetospheric processes, especially in the dayside cusp region. By comparing the field-aligned current and ionospheric convection patterns with the corresponding spectrograms of precipitating particles, the following signatures have been identified: (1) For the three cases studied, which all had an IMF with negative y and z components, the cusp precipitation was encountered by the DMSP satellites in the postnoon sector in the northern hemisphere and in the prenoon sector in the southern hemisphere. The equatorward part of the cusp in both hemispheres is in the sunward flow region and marks the beginning of the flow rotation from sunward to antisunward. (2) The pair of field-aligned currents near local noon, i.e., the cusp/mantle currents, are coincident with the cusp or mantle particle precipitation. In distinction, the field-aligned currents on the dawnside and duskside, i.e., the normal region 1 currents, are usually associated with the plasma sheet particle precipitation. Thus the cusp/mantle currents are generated on open field lines and the region 1 currents mainly on closed field lines. (3) Topologically, the cusp/mantle currents appear as an expansion of the region 1 currents from the dawnside and duskside and they overlap near local noon. When By is negative, in the northern hemisphere the downward field-aligned current is located poleward of the upward current; whereas in the southern hemisphere the upward current is located poleward of the downward current. (4) Under the assumption of quasi-steady state reconnection, the location of the separatrix in the ionosphere is estimated and the reconnection velocity is calculated to be between 400 and 550 m/s. The dayside separatrix lies equatorward of the dayside convection throat in the two cases examined.
Journal of Atmospheric and Solar-Terrestrial Physics | 1992
F. W. Menk; B. J. Fraser; H. J. Hansen; P. T. Newell; C.-I. Meng; Ray J. Morris
Abstract Geomagnetic pulsations in the 0.1–2.5 Hz (Pc1–2) range recorded over 12 quiet summer days at six Antarctic stations between −62.3 and −80.6° invariant latitude were examined in order to map the spatial and temporal distribution of spectral characteristics. Ionospheric particle signatures associated with the magnetospheric cusp and boundary layer were deduced for three of these days using ground riometer, magnetometer and ionosonde measurements, and in-situ ionospheric particle data. Comparison with the magnetic pulsation data shows that specific Pc1–2 emissions are associated with these regions. Within the cusp, intense unstructured ULF noise in the 0.15−0.4 Hz range is observed. Less intense waves of this type are seen near the cusp location on mantle and plasma sheet boundary layer flux tubes. These emissions are quite distinct from the discrete, structured and narrowband emissions seen equatorward of the cusp. Whereas past discussions of cusp and cleft identification have usually focused on optical or satellite data, we conclude that ground-based observations of Pc1–2 pulsations can provide a more convenient, although less precise, monitor of high latitude features.
Journal of Geophysical Research | 2006
David A. Holdsworth; Ray J. Morris; Damian J. Murphy; Iain M. Reid; G. B. Burns; W. John R. French
[1]xa0This paper presents the first Antarctic meteor radar temperature estimates. These temperatures have been derived from meteor diffusion coefficients using two techniques: pressure model and temperature gradient model. The temperatures are compared with a temperature model derived using colocated OH spectrometer measurements and Northern Hemisphere rocket observations. Pressure model temperatures derived using rocket-derived pressures show good agreement with the temperature model, while those derived using Mass Spectrometer and Incoherent Scatter (MSIS) and CIRA model pressures show good agreement in winter but poor agreement in summer. This confirms previous studies suggesting the unreliability of high-latitude CIRA pressures. The temperature gradient model temperatures show good agreement with the temperature model but show larger fluctuations than the pressure model temperatures. Meteor temperature estimates made during the Southern delta-Aquarids meteor shower are shown to be biased, suggesting that care should be taken in applying meteor temperature estimation during meteor showers. On the basis of our results we recommend the use of the pressure model technique at all sites, subject to determination of an appropriate pressure model.
Geophysical Research Letters | 1998
S. T. Ables; B. J. Fraser; C. L. Waters; D. A. Neudegg; Ray J. Morris
Induction magnetometer data recorded at three closely spaced sites (∼120 Km) in Antarctica (mlat ∼ −75°) have been examined for ionospheric signatures of the cusp/cleft region of the magnetosphere. Crossphase analysis of the 1–10 mHz band, using pure-state filtering techniques reveal diurnally varying field line resonances embedded in the spectra, while interstation phase lag measurements indicate azimuthal propagation of waves away from local magnetic noon. Using the T89 external field model crossphase measurements are put in the context of diurnally changing field line topology due to compression at the subsolar region and stretching along the dawn and dusk flanks. On six of the eight days of this study we have identify a consistent two dimensional phase pattern projected in the dayside ionosphere, indicating closed field lines thread these sites during periods of low to moderate geomagnetic activity (Kp<3).
Geophysical Research Letters | 1995
D. A. Neudegg; B. J. Fraser; F. W. Menk; H. J. Hansen; G. B. Burns; Ray J. Morris; M. J. Underwood
The polar cusp and boundary layer are important in coupling magnetospheric energy sources to the high latitude ionosphere. ULF waves are one of the processes by which this coupling is realized. To study the source regions and propagation characteristics of discrete Pc1-2 (0.1–2 Hz) ULF wave packets, particularly unstructured emissions and Pc1 bursts at high latitudes, a triangular array of closely spaced induction magnetometers (∼150 km) was deployed beneath the average cusp projection during the 1992 Antarctic winter. From interstation time lags the wave velocity and direction of arrival were calculated with average uncertainties of ±60 kms−1 and ±8°. Wave sources were poleward of the array at low geomagnetic activity and equatorward at high activity. The sources also moved east to west with time, centred around local noon. These results are interpreted as indicative of the ionospheric signature of sources localized in the cusp, the low latitude boundary layer (LLBL) or the outer magnetosphere. Intercalibration of the results for typical events with extrapolations of PACE radar observations and DMSP satellite particle signatures support sources within these regions. Observed group velocities in the range 300–800 kms−1 with a mean of 450 kms−1 are consistent with wave propagation in the ionospheric waveguide. Signals above the waveguide lower cutoff frequency likely propagate away from the source in the ionospheric waveguide and across the magnetometer array. The results suggest a technique for monitoring the high latitude boundary regions and outer magnetosphere using local ULF wave measurements.
Journal of Geophysical Research | 1992
H. J. Hansen; B. J. Fraser; F. W. Menk; Y. D. Hu; P. T. Newell; C.-I. Meng; Ray J. Morris
Dayside Pc 1 geomagnetic pulsation bursts have been studied using a three-station array of induction magnetometers located at high latitudes. Associated magnetic variations in the form of solitary pulses often lead the Pc 1 bursts by 1 to 2 min. These pulses are typically associated with riometer absorption events and consequently the precipitation of fluxes of keV electrons. The Pc 1 bursts are interpreted as resulting from ion cyclotron waves which have propagated to the ionosphere from the equatorial boundary layer region. The associated boundary layer ions, identified by the low-altitude DMSP F7 satellite, range between 1 and 5 keV in energy. These particles are considered to be the most likely free energy source for the ion cyclotron waves. It is considered that such resonant ions enter the magnetosphere via the cleft and cusp because this enables a prenoon time of occurrence of most of the observations to be explained. Measured time delays of 40 to 120 s between the associated riometer absorption and Pc 2 bursts are consistent with an ion cyclotron wave generations region located in the equatorial magnetosphere.
Geophysical Research Letters | 2009
Ray J. Morris; A. R. Klekociuk; David A. Holdsworth
[1]xa0A new characteristic of the austral summer polar mesopause as revealed by ground-based radar and satellite temperature measurements is reported, that is linked to inter-annual variability of the low-latitude easterly wind jet. Four consecutive seasons of polar mesosphere summer echoes (PMSE) and mesosphere temperature observations above Davis, Antarctica (68.6°S) show a mid-January diminution in PMSE occurrence rate that coincides with a minor mesopause warming of several degrees. Spectral analyses of PMSE, Aura Microwave Limb Sounder (MLS) temperatures and radar meridional winds show the presence of ∼4–5-day planetary waves (PWs) throughout the austral summer in the polar upper mesosphere together with enhanced ∼2-day PW activity from mid-January to mid-February. Analysis of MLS temperatures show that the ∼2-day PWs have zonal wavenumbers (S) with both westward (S = −2, −3) and eastward (S = +2, +3) components. Although displaying some inter-annual variation in the peak onset time, the mid-January mesopause warming coincides with a weakening of the equatorward meridional wind above Davis and enhancement of low-latitude 2-day PW activity.
Geophysical Research Letters | 2008
S. Kirkwood; H. Nilsson; Ray J. Morris; A. R. Klekociuk; David A. Holdsworth; N. J. Mitchell
[1]xa0Two VHF atmospheric radars operating in Antarctica during austral summer 2007/2008 found the Polar Mesosphere Summer Echo (PMSE) layer at 3–5 km higher altitude during the early season, compared to the late season, and to earlier seasons. Temperatures from the microwave limb sounder on the Aura satellite show that the height of the cold summer mesopause was ∼3 km higher than usual at the same time. The winter polar vortex over Antarctica did not break up until late December, so that eastward winds in the lower stratosphere were as strong as westward winds in the upper stratosphere during the early part of the austral summer. We find that a combination of limited gravity wave forcing from below in the same hemisphere and interhemisphere coupling between the winter stratosphere/mesosphere and the summer mesopause may explain the observations, and suggest a need for reappraisal of the formation mechanisms for the summer mesopause.