Rayda Ben Ayed
University of Sfax
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rayda Ben Ayed.
Database | 2016
Rayda Ben Ayed; Hanen Ben Hassen; Karim Ennouri; Riadh Ben Marzoug; Ahmed Rebai
Olive (Olea europaea), whose importance is mainly due to nutritional and health features, is one of the most economically significant oil-producing trees in the Mediterranean region. Unfortunately, the increasing market demand towards virgin olive oil could often result in its adulteration with less expensive oils, which is a serious problem for the public and quality control evaluators of virgin olive oil. Therefore, to avoid frauds, olive cultivar identification and virgin olive oil authentication have become a major issue for the producers and consumers of quality control in the olive chain. Presently, genetic traceability using SSR is the cost effective and powerful marker technique that can be employed to resolve such problems. However, to identify an unknown monovarietal virgin olive oil cultivar, a reference system has become necessary. Thus, an Olive Genetic Diversity Database (OGDD) (http://www.bioinfo-cbs.org/ogdd/) is presented in this work. It is a genetic, morphologic and chemical database of worldwide olive tree and oil having a double function. In fact, besides being a reference system generated for the identification of unkown olive or virgin olive oil cultivars based on their microsatellite allele size(s), it provides users additional morphological and chemical information for each identified cultivar. Currently, OGDD is designed to enable users to easily retrieve and visualize biologically important information (SSR markers, and olive tree and oil characteristics of about 200 cultivars worldwide) using a set of efficient query interfaces and analysis tools. It can be accessed through a web service from any modern programming language using a simple hypertext transfer protocol call. The web site is implemented in java, JavaScript, PHP, HTML and Apache with all major browsers supported. Database URL: http://www.bioinfo-cbs.org/ogdd/
Journal of Genetics | 2015
Rayda Ben Ayed; Imen Kallel; Hanen Ben Hassen; Ahmed Rebai
Olive (Olea europaea L.), which is an important oilproducing crop, is one of the oldest agricultural plant in the Mediterranean basin. The oil obtained is known for its nutritional and healthy benefits compared to other vegetable oils, and can be consumed in its crude form (Roche et al. 2000; Elloumi et al. 2012). Moreover, the olive oil sector plays an important role in the culture and socio-economy of many Mediterranean countries, including Tunisia. Traditionally, genetic variation analyses relying on morphological and chemical markers are insufficient to study the relationship and traceability between cultivars due to the environmental effect on the possibly large phenotype and the chemical composition, thus making it expensive (Busconi et al. 2003; Ben-Ayed et al. 2009, 2013). Recently, several molecular marker types, such as random amplified polymorphic DNA (RAPDs) (Busconi et al. 2003), amplified fragment length polymorphisms (AFLPs) (Pafundo et al. 2005; Grati Kamoun et al. 2006), simple sequence repeats (SSR) (Testolin and Lain 2005; Rekik et al. 2008; Ben-Ayed et al. 2009, 2012, 2014) and single nucleotide polymorphism (SNP) (Reale et al. 2006; Consolandi et al. 2008; RekikHakim et al. 2010) have been developed. These can be used as both detection of DNA polymorphisms and for effective distinction between different cultivars, thus solving traceability without any environmental influence. Despite the potential advantages of using SNPs for the authentication of major crop species as coffee (Spaniolas et al. 2006), to the best of our knowledge, the identification of SNP markers has not yet been documented in olive oil. Compared with other genetic markers, SNPs are beneficial from a technological viewpoint change in a single nucleotide allows the distinction of very similar cultivars. Moreover, these molecular markers requiring short DNA amplicons for genotyping and are genetically stable; their high density
International Journal of Biological Macromolecules | 2018
Souraya Boulkour Touioui; Nadia Zaraî Jaouadi; Khelifa Bouacem; Rayda Ben Ayed; Hatem Rekik; Bilal Zenati; Sidali Kourdali; Hadjira Boudjella; Nasserdine Sabaou; Samir Bejar; Mouhamed El Hattab; Abdelmalek Badis; Rachid Annane; Bassem Jaouadi
A novel extracellular protease called MPDZ was purified and characterized from Pseudomonas fluorescens strain TBS09. The enzymatic properties of MPDZ were investigated using biochemical and biophysical methods. Matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/MS) analysis revealed that it was a monomer with a molecular mass of 50013.17Da. The NH2-terminal 27 amino acid sequence of MPDZ showed high homology with those of Pseudomonas-proteases of the serralysin family. MPDZ showed optimal activity at pH 7 and 60°C. It was totally inhibited by EGTA, EDTA, and 1,10-phenanthroline, suggesting its belonging to the metalloprotease family. Because of the interesting properties, the mpDZ gene encoding MPDZ was cloned, sequenced, and expressed in E. coli. The deduced amino acid sequence showed a strong homology with other Pseudomonas-metalloproteases. The highest sequence identity value (97%) was obtained with AprX from P. fluorescens strain CY091, with only 12 different amino acid residues. The physico-chemical properties of the extracellular purified recombinant enzyme (rMPDZ) were similar to those of MPDZ. Overall, MPDZ is bestowed with a number of promising biochemical properties that might give new opportunities for its biocatalytic applications. These data constitute an essential first step towards an understanding of the properties of MPDZ enzyme.
Lipids in Health and Disease | 2018
Mohsen Hanana; Hajer Mezghenni; Rayda Ben Ayed; Ali Ben Dhiab; Slim Jarradi; Bassem Jamoussi; Lamia Hamrouni
BackgroundArgan oil is traditionally produced by cold pressing in South-western Morocco where rural population uses it as edible oil as well as for its therapeutic properties which give them in counterpart valuable income. Given the economical interest of this oil, several attempts of fraudulency have been registered in the world global market leading to loss of authenticity. Our purpose is to launch a program of Tunisian Argan oil valorization since trees from this species have been introduced sixty years ago in Tunisia. The first step was thus to characterize the physicochemical properties and determine the chemical composition of Tunisian Argan oil in order to assess its quality.MethodsPhysicochemical parameters of oil quality were determined according to the international standard protocols. Fatty acid content analysis of Argan oils was performed by gas chromatography coupled to mass spectrophotometry. A comparative study was realized among Tunisian, Moroccan and Algerian samples differing also by their extraction procedure. The impact of geographical localisation on the fatty acids composition was studied by statistical and modeling Bayesian analyses.ResultsPhysicochemical parameters analysis showed interestingly that Tunisian Argan oil could be classified as extra virgin oil. Argan oil is mainly composed by unsaturated fatty acids (80%), mainly oleic and linoleic acid (linoleic acid was positively influenced by the geographical localization (r = 0.899, p = 0.038) and the P/S index (r = 0.987, p = 0.002)) followed by saturated fatty acids (20%) with other beneficial compounds from the unsaponifiable fraction like polyphenols and carotenoids. Together with fatty acid content, these minor components are likely to be responsible for its nutraceutical properties and beneficial effects.ConclusionTunisian Argan oil displayed valuable qualitative parameters proving its competitiveness in comparison with Moroccan and Algerian oils, and could be therefore considered as extra virgin edible oil for nutraceutical purposes as well as for cosmetic use.
Lipids in Health and Disease | 2017
Rayda Ben Ayed; Karim Ennouri; Hajer Ben Hlima; Slim Smaoui; Mohsen Hanana; Rim Mzid; Sezai Ercisli; Ahmed Rebai
BackgroundGenotyping of the FAD2.1 and FAD2.3 polymorphisms in the fatty acid desaturase 2 gene (FADS2) shows that they are associated with the fatty acids composition of olive oil samples. However, these associations require further confirmation in the Tunisian olive oil cultivars, and little is known about the effect of polymorphisms in fatty acid-related genes on olive oil mono- and poly- unsaturated fatty acids distribution.MethodsA set of olive oils from 12 Tunisian cultivars was chosen. The fatty acid composition of each olive oil sample was determined by gas chromatography. Statistical and modeling Bayesian analyses were used to assess whether the FAD2.1 and FAD2.3 genotypes were associated with fatty acids composition.ResultsThe TT-FAD2.1 and the GG-FAD2.3 genotypes were found to be associated with a lower proportion of oleic acid (C18:1) (r = −0.778, p = 0.003; r = −0.781, p= 0.003) as well as higher proportion of linoleic (C18:2) (r = 0.693, p = 0.012; r = −0.759, p= 0.004) and palmitic acids (C16:0) (r = 0.643, p = 0.024; r = −0.503, p= 0.095), making varieties with this haplotype (i.e. Chemlali Sfax and Meski) producing more saturated (C16: 0) and polyunsaturated acids than oleic acid. The latter plays a major role in preventing several diseases.ConclusionThe two associations FADS2 FAD2.1 and FADS2 FAD2.3 with the fatty acid compositions of olive oil samples were identified among the studied olive cultivars. These associations differed between studied cultivars, which might explain variability in lipidic composition among them and consequently reflecting genetic diversity through differences in gene expression and biochemical pathways. FADS2 locus would constitute thus a good marker for detecting interesting lipidic chemotypes among commercial olive oils.
Journal of Genetics | 2016
Rim Mzid; Farhat Chibani; Rayda Ben Ayed; Mohsen Hanana; Joêlle Breidi; Rabih Kabalan; Samih Elhajj; Hassan Machlab; Ahmed Rebai; Lamis Chalak
1Laboratoire des Plantes Extrémophiles (LPE), Centre de Biotechnologie de Borj Cédria (CBBC), BP 901, Hammam-lif 2050, Tunisie 2Laboratoire de Physiologie Moléculaire des Plantes (LPMP), Centre de Biotechnologie de Borj Cédria (CBBC), BP 901, Hammam-lif 2050, Tunisie 3Molecular and Cellular Screening Processes Laboratory, Centre of Biotechnology of Sfax, PB 1177, 3018 Sfax, Tunisia 4Department of Plant Breeding, Lebanese Agricultural Research Institute, P.O. Box 287, Zahlé, Lebanon 5Department of Plant Production, Faculty of Agriculture, The Lebanese University, Dekwaneh, Beirut, Lebanon 6International Centre for Agricultural Research in Dry Areas, Bachir Al-Kassar Street, P.O. Box 114/5055, Verdun, Beirut, Lebanon
Acta Microbiologica Et Immunologica Hungarica | 2015
Karim Ennouri; Rayda Ben Ayed; Hanen Ben Hassen; Maura Mazzarello; Ennio Ottaviani
Bacillus thuringiensis (Bt) is a Gram-positive bacterium. The entomopathogenic activity of Bt is related to the existence of the crystal consisting of protoxins, also called delta-endotoxins. In order to optimize and explain the production of delta-endotoxins of Bacillus thuringiensis kurstaki, we studied seven medium components: soybean meal, starch, KH₂PO₄, K₂HPO₄, FeSO₄, MnSO₄, and MgSO₄and their relationships with the concentration of delta-endotoxins using an experimental design (Plackett-Burman design) and Bayesian networks modelling. The effects of the ingredients of the culture medium on delta-endotoxins production were estimated. The developed model showed that different medium components are important for the Bacillus thuringiensis fermentation. The most important factors influenced the production of delta-endotoxins are FeSO₄, K2HPO₄, starch and soybean meal. Indeed, it was found that soybean meal, K₂HPO₄, KH₂PO₄and starch also showed positive effect on the delta-endotoxins production. However, FeSO4 and MnSO4 expressed opposite effect. The developed model, based on Bayesian techniques, can automatically learn emerging models in data to serve in the prediction of delta-endotoxins concentrations. The constructed model in the present study implies that experimental design (Plackett-Burman design) joined with Bayesian networks method could be used for identification of effect variables on delta-endotoxins variation.
Molecular Biology Reports | 2018
Nesrine Sghaier; Rayda Ben Ayed; Mustapha Gorai; Ahmed Rebai
The plant hormone “auxin” is a key regulator of plant development and environmental responses. Many genes in Arabidopsis thaliana are known to be up-regulated in response to auxin. Auxin response factors activate or repress the expression of genes by binding at their promoter regions within auxin response elements (AuxRE) that are key regulatory cis-acting motives. Therefore, the identification of auxin-response elements is among the most important issues to understand the auxin regulation mechanisms. Thus, searching the TGTCTC motif is an unreliable method to identify AuxRE because many AuxRE variants may also be functional. In the present study, we perform an In-silico prediction of AuxREs in promoters of primary auxin responsive genes. We exploit microarray data of auxin response in Arabidopsis thaliana seedlings, in order to provide biological annotation to AuxRE. We apply a data fusion method based on the combined use of evidence theory and fuzzy sets to scan upstream sequences of response genes.
Lipids in Health and Disease | 2018
Rayda Ben Ayed; Karim Ennouri; Sezai Ercisli; Hajer Ben Hlima; Mohsen Hanana; Slim Smaoui; Ahmed Rebai; Fabienne Moreau
BackgroundVirgin olive oil is appreciated for its particular aroma and taste and is recognized worldwide for its nutritional value and health benefits. The olive oil contains a vast range of healthy compounds such as monounsaturated free fatty acids, especially, oleic acid. The SAD.1 polymorphism localized in the Stearoyl-acyl carrier protein desaturase gene (SAD) was genotyped and showed that it is associated with the oleic acid composition of olive oil samples. However, the effect of polymorphisms in fatty acid-related genes on olive oil monounsaturated and saturated fatty acids distribution in the Tunisian olive oil varieties is not understood.MethodsSeventeen Tunisian olive-tree varieties were selected for fatty acid content analysis by gas chromatography. The association of SAD.1 genotypes with the fatty acids composition was studied by statistical and Bayesian modeling analyses.ResultsFatty acid content analysis showed interestingly that some Tunisian virgin olive oil varieties could be classified as a functional food and nutraceuticals due to their particular richness in oleic acid. In fact, the TT-SAD.1 genotype was found to be associated with a higher proportion of mono-unsaturated fatty acids (MUFA), mainly oleic acid (C18:1) (r = − 0.79, p < 0.000) as well as lower proportion of palmitic acid (C16:0) (r = 0.51, p = 0.037), making varieties with this genotype (i.e. Zarrazi and Tounsi) producing more monounsaturated oleic acid (C18: 1) than saturated acid. These varieties could be thus used as nutraceuticals and functional food.ConclusionThe SAD.1 association with the oleic acid composition of olive oil was identified among the studied varieties. This correlation fluctuated between studied varieties, which might elucidate variability in lipidic composition among them and therefore reflecting genetic diversity through differences in gene expression and biochemical pathways. SAD locus would represent an excellent marker for identifying interesting amongst virgin olive oil lipidic composition.
3 Biotech | 2018
Rim Mzid; Walid Zorrig; Rayda Ben Ayed; Karim Ben Hamed; Mariem Ayadi; Yosra Damak; Virginie Lauvergeat; Mohsen Hanana
Our study aims to assess the implication of WRKY transcription factor in the molecular mechanisms of grapevine adaptation to salt and water stresses. In this respect, a full-length VvWRKY2 cDNA, isolated from a Vitis vinifera grape berry cDNA library, was constitutively over-expressed in Nicotiana tabacum seedlings. Our results showed that transgenic tobacco plants exhibited higher seed germination rates and better growth, under both salt and osmotic stress treatments, when compared to wild type plants. Furthermore, our analyses demonstrated that, under stress conditions, transgenic plants accumulated more osmolytes, such as soluble sugars and free proline, while no changes were observed regarding electrolyte leakage, H2O2, and malondialdehyde contents. The improvement of osmotic adjustment may be an important mechanism underlying the role of VvWRKY2 in promoting tolerance and adaptation to abiotic stresses. Principal component analysis of our results highlighted a clear partition of plant response to stress. On the other hand, we observed a significant adaptation behaviour response for transgenic lines under stress. Taken together, all our findings suggest that over-expression of VvWRKY2 gene has a compelling role in abiotic stress tolerance and, therefore, would provide a useful strategy to promote abiotic stress tolerance in grape via molecular-assisted breeding and/or new biotechnology tools.