Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Raymond A. Chavez is active.

Publication


Featured researches published by Raymond A. Chavez.


European Journal of Neuroscience | 2005

Controlling pathological pain by adenovirally driven spinal production of the anti-inflammatory cytokine, interleukin-10.

Erin D. Milligan; Stephen J. Langer; Evan M. Sloane; Lin He; Julie Wieseler-Frank; Kevin A. O'Connor; David Martin; John Forsayeth; Steven F. Maier; Kirk W. Johnson; Raymond A. Chavez; Leslie A. Leinwand; Linda R. Watkins

Gene therapy for the control of pain has, to date, targeted neurons. However, recent evidence supports that spinal cord glia are critical to the creation and maintenance of pain facilitation through the release of proinflammatory cytokines. Because of the ability of interleukin‐10 (IL‐10) to suppress proinflammatory cytokines, we tested whether an adenoviral vector encoding human IL‐10 (AD‐h‐IL10) would block and reverse pain facilitation. Three pain models were examined, all of which are mediated by spinal pro‐inflammatory cytokines. Acute intrathecal administration of rat IL‐10 protein itself briefly reversed chronic constriction injury‐induced mechanical allodynia and thermal hyperalgesia. The transient reversal caused by IL‐10 protein paralleled the half‐life of human IL‐10 protein in the intrathecal space (t1/2 ∼ 2 h). IL‐10 gene therapy both prevented and reversed thermal hyperalgesia and mechanical allodynia, without affecting basal responses to thermal or mechanical stimuli. Extra‐territorial, as well as territorial, pain changes were reversed by this treatment. Intrathecal AD‐h‐IL10 injected over lumbosacral spinal cord led to elevated lumbosacral cerebrospinal fluid (CSF) levels of human IL‐10, with far less human IL‐10 observed in cervical CSF. In keeping with IL‐10s known anti‐inflammatory actions, AD‐h‐IL10 lowered CSF levels of IL‐1, relative to control AD. These studies support that this gene therapy approach provides an alternative to neuronally focused drug and gene therapies for clinical pain control.


Molecular Pain | 2005

Controlling neuropathic pain by adeno-associated virus driven production of the anti-inflammatory cytokine, interleukin-10

Erin D. Milligan; Evan M. Sloane; Stephen J. Langer; Pedro E. Cruz; Marucia Chacur; Leah Spataro; Julie Wieseler-Frank; Sayamwong E. Hammack; Steven F. Maier; Terence R. Flotte; John Forsayeth; Leslie A. Leinwand; Raymond A. Chavez; Linda R. Watkins

Despite many decades of drug development, effective therapies for neuropathic pain remain elusive. The recent recognition of spinal cord glia and glial pro-inflammatory cytokines as important contributors to neuropathic pain suggests an alternative therapeutic strategy; that is, targeting glial activation or its downstream consequences. While several glial-selective drugs have been successful in controlling neuropathic pain in animal models, none are optimal for human use. Thus the aim of the present studies was to explore a novel approach for controlling neuropathic pain. Here, an adeno-associated viral (serotype II; AAV2) vector was created that encodes the anti-inflammatory cytokine, interleukin-10 (IL-10). This anti-inflammatory cytokine is known to suppress the production of pro-inflammatory cytokines. Upon intrathecal administration, this novel AAV2-IL-10 vector was successful in transiently preventing and reversing neuropathic pain. Intrathecal administration of an AAV2 vector encoding beta-galactosidase revealed that AAV2 preferentially infects meningeal cells surrounding the CSF space. Taken together, these data provide initial support that intrathecal gene therapy to drive the production of IL-10 may prove to be an efficacious treatment for neuropathic pain.


Journal of Biological Chemistry | 1999

TWIK-2, a new weak inward rectifying member of the tandem pore domain potassium channel family.

Raymond A. Chavez; Andrew T. Gray; Byron B. Zhao; Christoph H. Kindler; Matthew J. Mazurek; Yash Mehta; John Forsayeth; C. Spencer Yost

Potassium channels are found in all mammalian cell types, and they perform many distinct functions in both excitable and non-excitable cells. These functions are subserved by several different families of potassium channels distinguishable by primary sequence features as well as by physiological characteristics. Of these families, the tandem pore domain potassium channels are a new and distinct class, primarily distinguished by the presence of two pore-forming domains within a single polypeptide chain. We have cloned a new member of this family, TWIK-2, from a human brain cDNA library. Primary sequence analysis of TWIK-2 shows that it is most closely related to TWIK-1, especially in the pore-forming domains. Northern blot analysis reveals the expression of TWIK-2 in all human tissues assayed except skeletal muscle. Human TWIK-2 expressed heterologously in Xenopus oocytes is a non-inactivating weak inward rectifier with channel properties similar to TWIK-1. Pharmacologically, TWIK-2 channels are distinct from TWIK-1 channels in their response to quinidine, quinine, and barium. TWIK-2 is inhibited by intracellular, but not extracellular, acidification. This new clone reveals the existence of a subfamily in the tandem pore domain potassium channel family with weak inward rectification properties.


Pain | 2006

Repeated intrathecal injections of plasmid DNA encoding interleukin-10 produce prolonged reversal of neuropathic pain

Erin D. Milligan; Evan M. Sloane; Stephen J. Langer; Travis S. Hughes; Brian M. Jekich; Matthew G. Frank; John H. Mahoney; Lindsay H. Levkoff; Steven F. Maier; Pedro E. Cruz; Terence R. Flotte; Kirk W. Johnson; Melissa M. Mahoney; Raymond A. Chavez; Leslie A. Leinwand; Linda R. Watkins

&NA; Neuropathic pain is a major clinical problem unresolved by available therapeutics. Spinal cord glia play a pivotal role in neuropathic pain, via the release of proinflammatory cytokines. Anti‐inflammatory cytokines, like interleukin‐10 (IL‐10), suppress proinflammatory cytokines. Thus, IL‐10 may provide a means for controlling glial amplification of pain. We recently documented that intrathecal IL‐10 protein resolves neuropathic pain, albeit briefly (˜2–3 h), given its short half‐life. Intrathecal gene therapy using viruses encoding IL‐10 can also resolve neuropathic pain, but for only ˜2 weeks. Here, we report a novel approach that dramatically increases the efficacy of intrathecal IL‐10 gene therapy. Repeated intrathecal delivery of plasmid DNA vectors encoding IL‐10 (pDNA‐IL‐10) abolished neuropathic pain for greater than 40 days. Naked pDNA‐IL‐10 reversed chronic constriction injury (CCI)‐induced allodynia both shortly after nerve injury as well as 2 months later. This supports that spinal proinflammatory cytokines are important in both the initiation and maintenance of neuropathic pain. Importantly, pDNA‐IL‐10 gene therapy reversed mechanical allodynia induced by CCI, returning rats to normal pain responsiveness, without additional analgesia. Together, these data suggest that intrathecal IL‐10 gene therapy may provide a novel approach for prolonged clinical pain control.


Anesthesiology | 2000

Volatile anesthetics activate the human tandem pore domain baseline K+ channel KCNK5.

Andrew T. Gray; Byron B. Zhao; Christoph H. Kindler; Bruce D. Winegar; Matthew J. Mazurek; Jie Xu; Raymond A. Chavez; John Forsayeth; C. Spencer Yost

Background Previous studies have identified a volatile anesthetic–induced increase in baseline potassium permeability and concomitant neuronal inhibition. The emerging family of tandem pore domain potassium channels seems to function as baseline potassium channels in vivo. Therefore, we studied the effects of clinically used volatile anesthetics on a recently described member of this family. Methods A cDNA clone containing the coding sequence of KCNK5 was isolated from a human brain library. Expression of KCNK5 in the central nervous system was determined by Northern blot analysis and reverse-transcription polymerase chain reaction. Functional expression of the channel was achieved by injection of cRNA into Xenopus laevis oocytes. Results Expression of KCNK5 was detected in cerebral cortex, medulla, and spinal cord. When heterologously expressed in Xenopus oocytes, KCNK5 currents exhibited delayed activation, outward rectification, proton sensitivity, and modulation by protein kinase C. Clinical concentrations of volatile general anesthetics potentiated KCNK5 currents by 8–30%. Conclusion Human KCNK5 is a tandem pore domain potassium channel exhibiting delayed activation and sensitivity to volatile anesthetics and may therefore have a role in suppressing cellular excitability during general anesthesia.


Brain Behavior and Immunity | 2009

Anti-inflammatory cytokine gene therapy decreases sensory and motor dysfunction in experimental Multiple Sclerosis: MOG-EAE behavioral and anatomical symptom treatment with cytokine gene therapy

Evan M. Sloane; Annemarie Ledeboer; W. Seibert; Benjamen D. Coats; M. van Strien; S.F. Maier; Kirk W. Johnson; Raymond A. Chavez; Linda R. Watkins; Leslie A. Leinwand; Erin D. Milligan; A.M. Van Dam

Multiple Sclerosis (MS) is an autoimmune inflammatory disease that presents clinically with a range of symptoms including motor, sensory, and cognitive dysfunction as well as demyelination and lesion formation in brain and spinal cord. A variety of animal models of MS have been developed that share many of the pathological hallmarks of MS including motor deficits (ascending paralysis), demyelination and axonal damage of central nervous system (CNS) tissue. In recent years, neuropathic pain has been recognized as a prevalent symptom of MS in a majority of patients. To date, there have been very few investigations into sensory disturbances in animal models of MS. The current work contains the first assessment of hind paw mechanical allodynia (von Frey test) over the course of a relapsing-remitting myelin oligodendrocyte glycoprotein induced experimental autoimmune encephalomyelitis (MOG-EAE) rat model of MS and establishes the utility of this model in examining autoimmune induced sensory dysfunction. We demonstrate periods of both decreased responsiveness to touch that precedes the onset of hind limb paralysis, and increased responsiveness (allodynia) that occurs during the period of motor deficit amelioration traditionally referred to as symptom remission. Furthermore, we tested the ability of our recently characterized anti-inflammatory IL-10 gene therapy to treat the autoimmune inflammation induced behavioral symptoms and tissue histopathological changes. This therapy is shown here to reverse inflammation induced paralysis, to reduce disease associated reduction in sensitivity to touch, to prevent the onset of allodynia, to reverse disease associated loss of body weight, and to suppress CNS glial activation associated with disease progression in this model.


Journal of Biomedical Materials Research Part A | 2009

PEGylation of brain-derived neurotrophic factor for preserved biological activity and enhanced spinal cord distribution.

Ryan G. Soderquist; Erin D. Milligan; Evan M. Sloane; Jacqueline A. Harrison; Klarika K. Douvas; Joseph M. Potter; Travis S. Hughes; Raymond A. Chavez; Kirk W. Johnson; Linda R. Watkins; Melissa J. Mahoney

Brain-derived neurotrophic factor (BDNF) was covalently attached to polyethylene glycol (PEG) in order to enhance delivery to the spinal cord via the cerebrospinal fluid (intrathecal administration). By varying reaction conditions, mixtures of BDNF covalently attached to one (primary), two (secondary), three (tertiary), or more (higher order) PEG molecules were produced. The biological activity of each resulting conjugate mixture was assessed with the goal of identifying a relationship between the number of PEG molecules attached to BDNF and biological activity. A high degree of in vitro biological activity was maintained in mixtures enriched in primary and secondary conjugate products, while a substantial reduction in biological activity was observed in mixtures with tertiary and higher order conjugates. When a biologically active mixture of PEG-BDNF was administered intrathecally, it displayed a significantly improved half-life in the cerebrospinal fluid and an enhanced penetration into spinal cord tissue relative to native BDNF. Results from these studies suggest a PEGylation strategy that preserves the biological activity of the protein while also improving the half-life of the protein in vivo. Furthermore, PEGylation may be a promising approach for enhancing intrathecal delivery of therapeutic proteins with potential for treating disease and injury in the spinal cord.


Molecular Therapy | 2009

Intrathecal Injection of Naked Plasmid DNA Provides Long-term Expression of Secreted Proteins

Travis S. Hughes; Stephen J. Langer; Kirk W. Johnson; Raymond A. Chavez; Linda R. Watkins; Erin D. Milligan; Leslie A. Leinwand

Therapeutic benefit has been reported to result from intrathecal (i.t.) injection of transgene vectors, including naked DNA. However, most studies using naked DNA have measured only the transgene expression of intracellular proteins. Here we demonstrate that i.t. injection of naked DNA can result in long-term expression of secreted proteins. Plasmids expressing either secreted alkaline phosphatase (SEAP) or human interleukin-10 (hIL-10) were injected into the i.t. space in rats, and transgene products were repeatedly measured in the cerebrospinal fluid (CSF). Both SEAP and hIL-10 were maximal at 1 and 2 days after the injection and still detectable at 4 months. The utilization of a plasmid having two features that are hypothesized to increase gene expression (matrix attachment regions (MARs) and lack of CpG dinucleotides) resulted in a significant increase in gene expression. Reinjection of SEAP or hIL-10 plasmids after 4 months significantly increased protein levels at 1 and 14 days after the reinjection. SEAP was uniformly distributed between the DNA delivery site (approximately vertebral level T13) and the lumbar puncture site (L5/L6 inter-vertebral space), was reduced at the cisterna magna, and was detectable, though at much lower levels, in serum. These data suggest that naked DNA has the potential to be used as a therapeutic tool for applications that require long-term release of transgenes into the CSF.


Journal of Biomedical Materials Research Part A | 2009

PEGylation of interleukin‐10 for the mitigation of enhanced pain states

Ryan G. Soderquist; Erin D. Milligan; Jacqueline A. Harrison; Raymond A. Chavez; Kirk W. Johnson; Linda R. Watkins; Melissa J. Mahoney

The anti-inflammatory cytokine interleukin-10 (IL-10) shows promise for the treatment of neuropathic pain, but for IL-10 to be clinically useful as a short-term therapeutic its duration needs to be improved. In this study, IL-10 was covalently modified with polyethylene glycol (PEG) with the goal of stabilizing and increasing protein levels in the CSF to improve the efficacy of IL-10 for treating neuropathic pain. Two different PEGylation methods were explored in vitro to identify suitable PEGylated IL-10 products for subsequent in vivo testing. PEGylation of IL-10 by acylation yielded a highly PEGylated product with a 35-fold in vitro biological activity reduction. PEGylation of IL-10 by reductive amination yielded products with a minimal number of PEG molecules attached and in vitro biological activity reductions of approximately 3-fold. In vivo collections of cerebrospinal fluid after intrathecal administration demonstrated that 20 kDa PEG attachment to IL-10 increased the concentration of IL-10 in the cerebrospinal fluid over time. Relative to unmodified IL-10, the 20 kDa PEG-IL-10 product exhibited an increased therapeutic duration and magnitude in an animal model of neuropathic pain. This suggests that PEGylation is a viable strategy for the short-term treatment or, in conjunction with other approaches, the long-term treatment of enhanced pain states.


Journal of Gene Medicine | 2009

Immunogenicity of intrathecal plasmid gene delivery: cytokine release and effects on transgene expression

Travis S. Hughes; Stephen J. Langer; Salla I. Virtanen; Raymond A. Chavez; Linda R. Watkins; Erin D. Milligan; Leslie A. Leinwand

One method for the delivery of therapeutic proteins to the spinal cord is to inject nonviral gene vectors including plasmid DNA into the cerebrospinal fluid (CSF) that surrounds the spinal cord (intrathecal space). This approach has produced therapeutic benefits in animal models of disease and several months of protein expression; however, there is little information available on the immune response to these treatments in the intrathecal space, the relevance of plasmid CpG sequences to any plasmid‐induced immune response, or the effect of this immune response on transgene expression.

Collaboration


Dive into the Raymond A. Chavez's collaboration.

Top Co-Authors

Avatar

Linda R. Watkins

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Erin D. Milligan

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leslie A. Leinwand

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Evan M. Sloane

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Stephen J. Langer

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

John Forsayeth

University of California

View shared research outputs
Top Co-Authors

Avatar

Steven F. Maier

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Travis S. Hughes

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Brian M. Jekich

University of Colorado Boulder

View shared research outputs
Researchain Logo
Decentralizing Knowledge