Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Raymond A. Swanson is active.

Publication


Featured researches published by Raymond A. Swanson.


Glia | 2000

Astrocyte glutamate transport: Review of properties, regulation, and physiological functions

Christopher M. Anderson; Raymond A. Swanson

Rapid removal of glutamate from the extracellular space is required for the survival and normal function of neurons. Although glutamate transporters are expressed by all CNS cell types, astrocytes are the cell type primarily responsible for glutamate uptake. Astrocyte glutamate uptake also plays a role in regulating the activity of glutamatergic synapses. Lastly, release of glutamate from astrocytes, via transporter reversal and other routes, can contribute to glutamate receptor activation. This review examines the mechanisms of astrocyte glutamate uptake and release, with particular focus on high‐affinity Na+‐dependent transporters. Transporter regulation, energetics, and physiological roles are discussed. GLIA 32:1–14, 2000. Published 2000 Wiley‐Liss, Inc.


Journal of Cerebral Blood Flow and Metabolism | 2003

Astrocytes and brain injury

Yongmei Chen; Raymond A. Swanson

Astrocytes are the most numerous cell type in the central nervous system. They provide structural, trophic, and metabolic support to neurons and modulate synaptic activity. Accordingly, impairment in these astrocyte functions during brain ischemia and other insults can critically influence neuron survival. Astrocyte functions that are known to influence neuronal survival include glutamate uptake, glutamate release, free radical scavenging, water transport, and the production of cytokines and nitric oxide. Long-term recovery after brain injury, through neurite outgrowth, synaptic plasticity, or neuron regeneration, is influenced by astrocyte surface molecule expression and trophic factor release. In addition, the death or survival of astrocytes themselves may affect the ultimate clinical outcome and rehabilitation through effects on neurogenesis and synaptic reorganization.


The Journal of Neuroscience | 1997

Neuronal Regulation of Glutamate Transporter Subtype Expression in Astrocytes

Raymond A. Swanson; Jialing Liu; Johann W. Miller; Jeffrey D. Rothstein; Kevin Farrell; Becky A. Stein; Maria C. Longuemare

GLT-1, GLAST, and EAAC1 are high-affinity, Na+-dependent glutamate transporters identified in rat forebrain. The expression of these transporter subtypes was characterized in three preparations: undifferentiated rat cortical astrocyte cultures, astrocytes cocultured with cortical neurons, and astrocyte cultures differentiated with dibutyryl cyclic AMP (dBcAMP). The undifferentiated astrocyte monocultures expressed only the GLAST subtype. Astrocytes cocultured with neurons developed a stellate morphology and expressed both GLAST and GLT-1; neurons expressed only the EAAC1 transporter, and rare microglia in these cultures expressed GLT-1. Treatment of astrocyte cultures with dBcAMP induced expression of GLT-1 and increased expression of GLAST. These effects of dBcAMP on transporter expression were qualitatively similar to those resulting from coculture with neurons, but immunocytochemistry showed the pattern of transporter expression to be more complex in the coculture preparations. Compared with astrocytes expressing only GLAST, the dBcAMP-treated cultures expressing both GLAST and GLT-1 showed an increase in glutamate uptake Vmax, but no change in the glutamate Km and no increased sensitivity to inhibition by dihydrokainate. Pyrrolidine-2,4-dicarboxylic acid andthreo-β-hydroxyaspartic acid caused relatively less inhibition of transport in cultures expressing both GLAST and GLT-1, suggesting a weaker effect at GLT-1 than at GLAST. These studies show that astrocyte expression of glutamate transporter subtypes is influenced by neurons, and that dBcAMP can partially mimic this influence. Manipulation of transporter expression in astrocyte cultures may permit identification of factors regulating the expression and function of GLAST and GLT-1 in their native cell type.


Current Molecular Medicine | 2004

Astrocyte Influences on Ischemic Neuronal Death

Raymond A. Swanson; Weihai Ying; Tiina M. Kauppinen

Glutamate excitotoxicity, oxidative stress, and acidosis are primary mediators of neuronal death during ischemia and reperfusion. Astrocytes influence these processes in several ways. Glutamate uptake by astrocytes normally prevents excitotoxic glutamate elevations in brain extracellular space, and this process appears to be a critical determinant of neuronal survival in the ischemic penumbra. Conversely, glutamate efflux from astrocytes by reversal of glutamate uptake, volume sensitive organic ion channels, and other routes may contribute to extracellular glutamate elevations. Glutamate activation of neuronal N-methyl-D-aspartate (NMDA) receptors is modulated by glycine and D-serine: both of these neuromodulators are transported by astrocytes, and D-serine production is localized exclusively to astrocytes. Astrocytes influence neuronal antioxidant status through release of ascorbate and uptake of its oxidized form, dehydroascorbate, and by indirectly supporting neuronal glutathione metabolism. In addition, glutathione in astrocytes can serve as a sink for nitric oxide and thereby reduce neuronal oxidant stress during ischemia. Astrocytes probably also influence neuronal survival in the post-ischemic period. Reactive astrocytes secrete nitric oxide, TNFalpha, matrix metalloproteinases, and other factors that can contribute to delayed neuronal death, and facilitate brain edema via aquaporin-4 channels localized to the astrocyte endfoot-endothelial interface. On the other hand erythropoietin, a paracrine messenger in brain, is produced by astrocytes and upregulated after ischemia. Erythropoietin stimulates the Janus kinase-2 (JAK-2) and nuclear factor-kappaB (NF-kB) signaling pathways in neurons to prevent programmed cell death after ischemic or excitotoxic stress. Astrocytes also secrete several angiogenic and neurotrophic factors that are important for vascular and neuronal regeneration after stroke.


Nature Neuroscience | 2009

NADPH oxidase is the primary source of superoxide induced by NMDA receptor activation

A. Brennan; Sang Won Suh; Seok Joon Won; Purnima Narasimhan; Tiina M. Kauppinen; Hokyou Lee; Ylva Edling; Pak H. Chan; Raymond A. Swanson

Neuronal NMDA receptor (NMDAR) activation leads to the formation of superoxide, which normally acts in cell signaling. With extensive NMDAR activation, the resulting superoxide production leads to neuronal death. It is widely held that NMDA-induced superoxide production originates from the mitochondria, but definitive evidence for this is lacking. We evaluated the role of the cytoplasmic enzyme NADPH oxidase in NMDA-induced superoxide production. Neurons in culture and in mouse hippocampus responded to NMDA with a rapid increase in superoxide production, followed by neuronal death. These events were blocked by the NADPH oxidase inhibitor apocynin and in neurons lacking the p47phox subunit, which is required for NADPH oxidase assembly. Superoxide production was also blocked by inhibiting the hexose monophosphate shunt, which regenerates the NADPH substrate, and by inhibiting protein kinase C zeta, which activates the NADPH oxidase complex. These findings identify NADPH oxidase as the primary source of NMDA-induced superoxide production.


Nature Neuroscience | 2006

Neuronal glutathione deficiency and age-dependent neurodegeneration in the EAAC1 deficient mouse

Koji Aoyama; Sang Won Suh; Aaron M. Hamby; Jialing Liu; Wai Yee Chan; Yongmei Chen; Raymond A. Swanson

Uptake of the neurotransmitter glutamate is effected primarily by transporters expressed on astrocytes, and downregulation of these transporters leads to seizures and neuronal death. Neurons also express a glutamate transporter, termed excitatory amino acid carrier–1 (EAAC1), but the physiological function of this transporter remains uncertain. Here we report that genetically EAAC1-null (Slc1a1−/−) mice have reduced neuronal glutathione levels and, with aging, develop brain atrophy and behavioral changes. EAAC1 can also rapidly transport cysteine, an obligate precursor for neuronal glutathione synthesis. Neurons in the hippocampal slices of EAAC1−/− mice were found to have reduced glutathione content, increased oxidant levels and increased susceptibility to oxidant injury. These changes were reversed by treating the EAAC1−/− mice with N-acetylcysteine, a membrane-permeable cysteine precursor. These findings suggest that EAAC1 is the primary route for neuronal cysteine uptake and that EAAC1 deficiency thereby leads to impaired neuronal glutathione metabolism, oxidative stress and age-dependent neurodegeneration.


Journal of Clinical Investigation | 2007

Hypoglycemic neuronal death is triggered by glucose reperfusion and activation of neuronal NADPH oxidase

Sang Won Suh; Elizabeth Gum; Aaron M. Hamby; Pak H. Chan; Raymond A. Swanson

Hypoglycemic coma and brain injury are potential complications of insulin therapy. Certain neurons in the hippocampus and cerebral cortex are uniquely vulnerable to hypoglycemic cell death, and oxidative stress is a key event in this cell death process. Here we show that hypoglycemia-induced oxidative stress and neuronal death are attributable primarily to the activation of neuronal NADPH oxidase during glucose reperfusion. Superoxide production and neuronal death were blocked by the NADPH oxidase inhibitor apocynin in both cell culture and in vivo models of insulin-induced hypoglycemia. Superoxide production and neuronal death were also blocked in studies using mice or cultured neurons deficient in the p47(phox) subunit of NADPH oxidase. Chelation of zinc with calcium disodium EDTA blocked both the assembly of the neuronal NADPH oxidase complex and superoxide production. Inhibition of the hexose monophosphate shunt, which utilizes glucose to regenerate NADPH, also prevented superoxide formation and neuronal death, suggesting a mechanism linking glucose reperfusion to superoxide formation. Moreover, the degree of superoxide production and neuronal death increased with increasing glucose concentrations during the reperfusion period. These results suggest that high blood glucose concentrations following hypoglycemic coma can initiate neuronal death by a mechanism involving extracellular zinc release and activation of neuronal NADPH oxidase.


The Journal of Neuroscience | 2010

NAD+ depletion is necessary and sufficient for poly(ADP-ribose) polymerase-1-mediated neuronal death.

Conrad C. Alano; Philippe Garnier; Weihai Ying; Youichirou Higashi; Tiina M. Kauppinen; Raymond A. Swanson

Poly(ADP-ribose)-1 (PARP-1) is a key mediator of cell death in excitotoxicity, ischemia, and oxidative stress. PARP-1 activation leads to cytosolic NAD+ depletion and mitochondrial release of apoptosis-inducing factor (AIF), but the causal relationships between these two events have been difficult to resolve. Here, we examined this issue by using extracellular NAD+ to restore neuronal NAD+ levels after PARP-1 activation. Exogenous NAD+ was found to enter neurons through P2X7-gated channels. Restoration of cytosolic NAD+ by this means prevented the glycolytic inhibition, mitochondrial failure, AIF translocation, and neuron death that otherwise results from extensive PARP-1 activation. Bypassing the glycolytic inhibition with the metabolic substrates pyruvate, acetoacetate, or hydroxybutyrate also prevented mitochondrial failure and neuron death. Conversely, depletion of cytosolic NAD+ with NAD+ glycohydrolase produced a block in glycolysis inhibition, mitochondrial depolarization, AIF translocation, and neuron death, independent of PARP-1 activation. These results establish NAD+ depletion as a causal event in PARP-1-mediated cell death and place NAD+ depletion and glycolytic failure upstream of mitochondrial AIF release.


Journal of Cerebral Blood Flow and Metabolism | 1993

Glial Glycogen Stores Affect Neuronal Survival During Glucose Deprivation In Vitro

Raymond A. Swanson; Dennis W. Choi

Glia perform several energy-dependent functions that may aid neuronal survival under pathological conditions. Glycogen is the major energy reserve in brain, and it is localized almost exclusively to astrocytes. Using murine cortical cell cultures containing both glia and neurons, we examined the effect of altered glial glycogen stores on neuronal survival following glucose deprivation. As previously reported, cultures exposed for several hours to media lacking glucose developed widespread neuronal degeneration without glial degeneration. If glial astrocyte glycogen content was increased to 2–3 times control levels by a 24-h pretreatment with 1 μM insulin or 0.5 mM methionine sulfoximine (MSO), glucose deprivation-induced neuronal degeneration was attenuated. These protective effects were blocked if glycogen levels were reduced back to control levels by a 30-min exposure to 1 mM dibutyryl cyclic AMP or 20 μM norepinephrine prior to glucose deprivation. Astrocyte glycogen stores may be an important factor influencing neuronal survival under conditions of energy substrate limitation.


Neuroscience | 1992

Sensory stimulation induces local cerebral glycogenolysis: demonstration by autoradiography.

Raymond A. Swanson; M.M. Morton; Stephen M. Sagar; Frank R. Sharp

Brain glycogen stores are localized primarily to glia and undergo continuous utilization and resynthesis. To study the function of glycogen under normal conditions in brain, we developed an autoradiographic method of demonstrating local-glycogen utilization in the awake rat. The method employs labeling of brain glycogen with 14C(3,4)glucose, in situ microwave fixation of brain metabolism, and anhydrous tissue preparation. With this technique, tactile stimulation of the rat face and vibrissae was found to accelerate the utilization of labeled glycogen in brain regions known to receive sensory input from face and vibrissae: the contralateral somatosensory cortex and the ipsilateral trigeminal, sensory and motor nuclei. These findings demonstrate a link between neuronal activity and local glycogen utilization in mammalian brain and suggest that, like other tissues, brain may respond to sudden increases in energy demand in part by rapid glycolytic metabolism of glycogen. As cerebral glycogen is restricted primarily to glia, these observations also support a close coupling of glial energy metabolism with neuronal activity.

Collaboration


Dive into the Raymond A. Swanson's collaboration.

Top Co-Authors

Avatar

Sang Won Suh

University of California

View shared research outputs
Top Co-Authors

Avatar

Weihai Ying

University of California

View shared research outputs
Top Co-Authors

Avatar

Seok Joon Won

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frank R. Sharp

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jialing Liu

University of California

View shared research outputs
Top Co-Authors

Avatar

Yongmei Chen

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge