Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Raymond Bercion is active.

Publication


Featured researches published by Raymond Bercion.


Emerging Infectious Diseases | 2011

Class D OXA-48 Carbapenemase in Multidrug-Resistant Enterobacteria, Senegal

Olivier Moquet; Coralie Bouchiat; Alfred Dieudonné Kinana; Abdoulaye Seck; Omar Arouna; Raymond Bercion; Sebastien Breurec; Benoit Garin

To the Editor: Class D OXA β-lactamases are characterized as penicillinases that can hydrolyze oxacillin and cloxacillin and are poorly inhibited by clavulanic acid and EDTA. OXA-48 is one of the few members of this family to possess notable carbapenem-hydrolyzing activity (1). First described in 2004 in Turkey, OXA-48 has recently started to spread in Europe and the Middle East (2). We report the recent emergence of the plasmid-encoded blaOXA-48 gene in multidrug-resistant Enterobacteriaceae recovered from patients in Dakar, Senegal, in hospitals and in the community. From November 2008 through October 2009, 11 Enterobacteriaceae isolates (8 Klebsiella pneumoniae, 1 Escherichia coli, 1 Enterobacter cloacae, and 1 Enterobacter sakazakii) with reduced susceptibility to imipenem were identified at the Institut Pasteur (Dakar, Senegal). Antibacterial drug susceptibility was determined by the disk diffusion method and interpreted according to the European Committee on Antimicrobial Susceptibility Testing guidelines (www.eucast.org). Nine isolates were resistant to expanded-spectrum cephalosporins and also to other antibacterial drug classes. The isolates were recovered from 6 patients with urinary tract infections, 4 patients with surgical infections, and 1 patient with omphalitis. Nine infections were hospital acquired (Le Dantec and Principal Hospitals). Because the patients died before antibacterial drug susceptibility testing could be completed, all 5 patients with surgical infections or omphalitis received only empirical therapy with amoxicillin/clavulanate. One patient with a nosocomial urinary tract infection caused by a co-trimoxazole–susceptible strain was successfully treated with this antibacterial agent. The antibacterial drug regimens of the remaining 4 patients were not known, and they were lost to follow-up. We determined the MICs of imipenem, meropenem, and ertapenem by using the Etest method (AB Biodisk, Solna, Sweden), which showed that 9 isolates were susceptible to imipenem and meropenem but either intermediately susceptible or resistant to ertapenem (Table). The 2 imipenem-nonsusceptible isolates were susceptible or intermediately susceptible to meropenem, and both were resistant to ertapenem. We used previously described PCRs (1,3–7) to screen for carbapenem-hydrolyzing β-lactamase genes (blaVIM, blaIMP, blaKPC, and blaOXA-48), as well as plasmid-encoded blaCTX-M, blaAmpC, blaOXA-1, and blaTEM β-lactamase genes; the aac(6′)-Ib aminoglycoside resistance gene; the quinolone resistance genes qnrA,B,S; the tetracycline resistance genes tetA,B,D; and class 1 integron. The blaOXA-48, blaCTX-M, blaAmpC, and aac(6′)-Ib genes and the variable region of class 1 integron were then characterized by direct DNA sequencing of the PCR products. blaOXA-48 was present in all 11 isolates. blaVIM, blaIMP, and blaKPC were not detected. The qnr genes were present in 7 isolates resistant to ciprofloxacin. The aac(6′)-Ib-cr variant was present in 7 isolates resistant to gentamicin, tobramycin, and ciprofloxacin. The 9 isolates resistant to expanded-spectrum cephalosporins all harbored the blaCTX-M-15 gene. The E. coli isolate also harbored the plasmid-encoded blaAmpC gene ACT-1; blaCTX-M-15, blaOXA-1, blaTEM, and aac(6′)lb-cr were associated in 6 isolates. Long-range PCRs showed that these latter 4 genes were located in the same “multidrug resistance region,” as described in Senegal (6). Positive conjugation experiments with sodium azide–resistant E. coli J53 showed through PCR results, plasmid DNA extraction, and antibiogram patterns of the obtained transconjugants that blaOXA-48 was located on a 70-kb self-conjugative plasmid. The genetic environment of blaOXA-48 was then investigated by PCR with primers specific for insertion sequence IS1999 and for the 5′ part of blaOXA-48 (1). blaOXA-48 was found to be part of a Tn1999 composite transposon composed of 2 copies of the insertion sequence IS1999, as reported (2). Further sequencing of the IS1999 located upstream of blaOXA-48 showed that it was consistently truncated by the insertion sequence IS1R, as initially described in Turkey and more recently in Lebanon and Egypt (2,8). XbaI pulsed-field gel electrophoresis was then used to study the genetic relatedness of the 8 K. pneumoniae isolates. Three isolates had similar restriction profiles and had been recovered from 3 patients concurrently hospitalized at Le Dantec Hospital, suggesting nosocomial transmission. A class 1 integron harboring the dfrA1 trimethoprim-resistance gene was detected in the 3 clonal isolates. Together, these findings show the recent emergence of blaOXA-48 in Senegal in community and hospital settings. They may also suggest the spread of the same major carrying plasmid between the Middle East and Africa. Although 9 of the 11 isolates were found to be susceptible to imipenem on the basis of their MICs, their MICs were nonetheless higher than those of blaOXA-48–negative isolates. This raises 2 issues. First, these strains might go undetected during routine antibacterial drug susceptibility testing, a problem that could be overcome by using ertapenem, a compound more susceptible to carbapenemases. Second, the clinical efficacy of imipenem on such strains is uncertain. The frequency of acquired carbapenemases, which emerged early after imipenem introduction in Senegal (2008), is probably strongly underestimated, partly owing to the limited availability of reliable clinical laboratories (9). Because multidrug resistance is prevalent among Enterobacteriaceae isolated in Dakar hospitals (B. Garin, unpub. data) and in rural communities (6), the emergence of blaOXA-48 is a clear cause for concern. Table Resistance genes and carbapenem MICs of 11 Enterbacteriaceae isolates, Senegal, 2008–2009*


Emerging Infectious Diseases | 2002

Recent increase in meningitis caused by Neisseria meningitidis serogroups A and W135 Yaoundé Cameroon.

Marie-Christine Fonkoua; Muhamed-Kheir Taha; Pierre Nicolas; Patrick Cunin; Jean-Michel Alonso; Raymond Bercion; Jeanne Musi; Paul M. V. Martin

From 1991 to 1998, Neisseria meningitidis serogroups A, B, and C represented 2%-10% of strains isolated from cases of bacterial meningitis in Yaoundé. During 1999 to 2000, the percentage of meningococci reached 17%, a proportion never reported since recordkeeping began in 1984. The increase of serogroup A meningococci and the emergence of W135 strains highlight the need for increased surveillance for better diagnosis and prevention.


Malaria Journal | 2013

Pfhrp2 and pfhrp3 polymorphisms in Plasmodium falciparum isolates from Dakar, Senegal: impact on rapid malaria diagnostic tests

Nathalie Wurtz; Bécaye Fall; Kim Bui; Aurélie Pascual; Mansour Fall; Cheikhou Camara; Bakary Diatta; Khadidiatou Ba Fall; P.S. Mbaye; Yaya Diémé; Raymond Bercion; Boubacar Wade; Sébastien Briolant; Bruno Pradines

BackgroundAn accurate diagnosis is essential for the rapid and appropriate treatment of malaria. The accuracy of the histidine-rich protein 2 (PfHRP2)-based rapid diagnostic test (RDT) Palutop+4® was assessed here. One possible factor contributing to the failure to detect malaria by this test is the diversity of the parasite PfHRP2 antigens.MethodsPfHRP2 detection with the Palutop+4® RDT was carried out. The pfhrp2 and pfhrp3 genes were amplified and sequenced from 136 isolates of Plasmodium falciparum that were collected in Dakar, Senegal from 2009 to 2011. The DNA sequences were determined and statistical analyses of the variation observed between these two genes were conducted. The potential impact of PfHRP2 and PfHRP3 sequence variation on malaria diagnosis was examined.ResultsSeven P. falciparum isolates (5.9% of the total isolates, regardless of the parasitaemia; 10.7% of the isolates with parasitaemia ≤0.005% or ≤250 parasites/μl) were undetected by the PfHRP2 Palutop+4® RDT. Low parasite density is not sufficient to explain the PfHRP2 detection failure. Three of these seven samples showed pfhrp2 deletion (2.4%). The pfhrp3 gene was deleted in 12.8%. Of the 122 PfHRP2 sequences, 120 unique sequences were identified. Of the 109 PfHRP3 sequences, 64 unique sequences were identified. Using the Baker’s regression model, at least 7.4% of the P. falciparum isolates in Dakar were likely to be undetected by PfHRP2 at a parasite density of ≤250 parasites/μl (slightly lower than the evaluated prevalence of 10.7%). This predictive prevalence increased significantly between 2009 and 2011 (P = 0.0046).ConclusionIn the present work, 10.7% of the isolates with a parasitaemia ≤0.005% (≤250 parasites/μl) were undetected by the PfHRP2 Palutop+4® RDT (7.4% by the predictive Baker’model). In addition, all of the parasites with pfhrp2 deletion (2.4% of the total samples) and 2.1% of the parasites with parasitaemia >0.005% and presence of pfhrp2 were not detected by PfHRP2 RDT. PfHRP2 is highly polymorphic in Senegal. Efforts should be made to more accurately determine the prevalence of non-sensitive parasites to pfHRP2.


Malaria Journal | 2011

Ex vivo susceptibility of Plasmodium falciparum isolates from Dakar, Senegal, to seven standard anti-malarial drugs

Bécaye Fall; Silmane Diawara; Kowry Sow; Eric Baret; Bakary Diatta; Khadidiatou Ba Fall; P.S. Mbaye; Fatou Fall; Yaya Diémé; Christophe Rogier; Boubacar Wade; Raymond Bercion; Bruno Pradines

BackgroundAs a result of widespread chloroquine and sulphadoxine-pyrimethamine resistance, artemisinin-based combination therapy (ACT) (which includes artemether-lumefantrine and artesunate-amodiaquine) has been recommended as a first-line anti-malarial regimen in Senegal since 2006. Since then, there have been very few reports on the ex vivo susceptibility of Plasmodium falciparum to anti-malarial drugs. To examine whether parasite susceptibility has been affected by the widespread use of ACT, the ex vivo susceptibility of local isolates was assessed at the military hospital of Dakar.MethodsThe ex vivo susceptibility of 93 P. falciparum isolates from Dakar was successfully determined using the Plasmodium lactate dehydrogenase (pLDH) ELISA for the following drugs: chloroquine (CQ), quinine (QN), mefloquine (MQ), monodesethylamodiaquine (MDAQ), lumefantrine (LMF), dihydroartemisinin (DHA) and doxycycline (DOX).ResultsAfter transformation of the isolate IC50 in ratio of IC50 according to the susceptibility of the 3D7 reference strain (isolate IC50/3D7 IC50), the prevalence of the in vitro resistant isolates with reduced susceptibility was 50% for MQ, 22% for CQ, 12% for DOX, 6% for both QN and MDAQ and 1% for the drugs LMF and DHA. The highest significant positive correlations were shown between responses to CQ and MDAQ (r = 0.569; P < 0.0001), LMF and QN (r = 0.511; P < 0.0001), LMF and DHA (r = 0.428; P = 0.0001), LMF and MQ (r = 0.413; P = 0.0002), QN and DHA (r = 0.402; P = 0.0003) and QN and MQ (r = 0.421; P = 0.0001).ConclusionsThe introduction of ACT in 2002 has not induced a decrease in P. falciparum susceptibility to the drugs DHA, MDAQ and LMF, which are common ACT components. However, the prevalence of P. falciparum isolates with reduced susceptibility has increased for both MQ and DOX. Taken together, these data suggest that intensive surveillance of the P. falciparum in vitro susceptibility to anti-malarial drugs in Senegal is required.


Malaria Journal | 2012

Prevalence of molecular markers of Plasmodium falciparum drug resistance in Dakar, Senegal

Nathalie Wurtz; Bécaye Fall; Aurélie Pascual; Silmane Diawara; Kowry Sow; Eric Baret; Bakary Diatta; Khadidiatou Ba Fall; P.S. Mbaye; Fatou Fall; Yaya Diémé; Christophe Rogier; Raymond Bercion; Sébastien Briolant; Boubacar Wade; Bruno Pradines

BackgroundAs a result of the widespread resistance to chloroquine and sulphadoxine-pyrimethamine, artemisinin-based combination therapy (ACT) (including artemether-lumefantrine and artesunate-amodiaquine) has been recommended as a first-line anti-malarial regimen in Senegal since 2006. Intermittent preventive treatments with anti-malarial drugs based on sulphadoxine-pyrimethamine are also given to children or pregnant women once per month during the transmission season. Since 2006, there have been very few reports on the susceptibility of Plasmodium falciparum to anti-malarial drugs. To estimate the prevalence of resistance to several anti-malarial drugs since the introduction of the widespread use of ACT, the presence of molecular markers associated with resistance to chloroquine and sulphadoxine-pyrimethamine was assessed in local isolates at the military hospital of Dakar.MethodsThe prevalence of genetic polymorphisms in genes associated with anti-malarial drug resistance, i.e., Pfcrt, Pfdhfr, Pfdhps and Pfmdr1, and the copy number of Pfmdr1 were evaluated for a panel of 174 isolates collected from patients recruited at the military hospital of Dakar from 14 October 2009 to 19 January 2010.ResultsThe Pfcrt 76T mutation was identified in 37.2% of the samples. The Pfmdr1 86Y and 184F mutations were found in 16.6% and 67.6% of the tested samples, respectively. Twenty-eight of the 29 isolates with the 86Y mutation were also mutated at codon 184. Only one isolate (0.6%) had two copies of Pfmdr1. The Pfdhfr 108N/T, 51I and 59R mutations were identified in 82.4%, 83.5% and 74.1% of the samples, respectively. The double mutant (108N and 51I) was detected in 83.5% of the isolates, and the triple mutant (108N, 51I and 59R) was detected in 75.3%. The Pfdhps 437G, 436F/A and 613S mutations were found in 40.2%, 35.1% and 1.8% of the samples, respectively. There was no double mutant (437G and 540E) or no quintuple mutant (Pfdhfr 108N, 51I and 59R and Pfdhps 437G and 540E). The prevalence of the quadruple mutant (Pfdhfr 108N, 51I and 59R and Pfdhps 437G) was 36.5%.ConclusionsSince 2004, the prevalence of chloroquine resistance had decreased. The prevalence of isolates with high-level pyrimethamine resistance is 83.5%. The prevalence of isolates resistant to sulphadoxine is 40.2%. However, no quintuple mutant (Pfdhfr 108N, 51I and 59R and Pfdhps 437G and 540E), which is associated with a high level of sulphadoxine-pyrimethamine resistance, has been identified to date. The resistance to amodiaquine remains moderate.


Antimicrobial Agents and Chemotherapy | 2014

Role of Pfmdr1 in in Vitro Plasmodium falciparum Susceptibility to Chloroquine, Quinine, Monodesethylamodiaquine, Mefloquine, Lumefantrine and Dihydroartemisinin

Nathalie Wurtz; Bécaye Fall; Aurélie Pascual; Mansour Fall; Eric Baret; Cheikhou Camara; Aminata Nakoulima; Bakary Diatta; Khadidiatou Ba Fall; P.S. Mbaye; Yaya Diémé; Raymond Bercion; Boubacar Wade; Bruno Pradines

ABSTRACT The involvement of Pfmdr1 (Plasmodium falciparum multidrug resistance 1) polymorphisms in antimalarial drug resistance is still debated. Here, we evaluate the association between polymorphisms in Pfmdr1 (N86Y, Y184F, S1034C, N1042D, and D1246Y) and Pfcrt (K76T) and in vitro responses to chloroquine (CQ), mefloquine (MQ), lumefantrine (LMF), quinine (QN), monodesethylamodiaquine (MDAQ), and dihydroartemisinin (DHA) in 174 Plasmodium falciparum isolates from Dakar, Senegal. The Pfmdr1 86Y mutation was identified in 14.9% of the samples, and the 184F mutation was identified in 71.8% of the isolates. No 1034C, 1042N, or 1246Y mutations were detected. The Pfmdr1 86Y mutation was significantly associated with increased susceptibility to MDAQ (P = 0.0023), LMF (P = 0.0001), DHA (P = 0.0387), and MQ (P = 0.00002). The N86Y mutation was not associated with CQ (P = 0.214) or QN (P = 0.287) responses. The Pfmdr1 184F mutation was not associated with various susceptibility responses to the 6 antimalarial drugs (P = 0.168 for CQ, 0.778 for MDAQ, 0.324 for LMF, 0.961 for DHA, 0.084 for QN, and 0.298 for MQ). The Pfmdr1 86Y-Y184 haplotype was significantly associated with increased susceptibility to MDAQ (P = 0.0136), LMF (P = 0.0019), and MQ (P = 0.0001). The additional Pfmdr1 86Y mutation increased significantly the in vitro susceptibility to MDAQ (P < 0.0001), LMF (P < 0.0001), MQ (P < 0.0001), and QN (P = 0.0026) in wild-type Pfcrt K76 parasites. The additional Pfmdr1 86Y mutation significantly increased the in vitro susceptibility to CQ (P = 0.0179) in Pfcrt 76T CQ-resistant parasites.


Sexually Transmitted Diseases | 2008

Antimicrobial susceptibility of Neisseria gonorrhoeae strains isolated in 2004-2006 in Bangui, Central African Republic; Yaoundé, Cameroon; Antananarivo, Madagascar; and Ho Chi Minh Ville and Nha Trang, Vietnam.

Van Cao; Elisoa Ratsima; Doan Van Tri; Raymond Bercion; Marie-Christine Fonkoua; Vincent Richard; Antoine Talarmin

Goal: To investigate the in vitro antimicrobial susceptibility of Neisseria gonorrhoeae strains isolated in 2004 and 2005 in Bangui, Central African Republic; Yaoundé, Cameroon; Antananarivo, Madagascar; and Ho Chi Minh Ville and Nha Trang, Vietnam. Study Design: Antimicrobial susceptibility testing was performed by both disk diffusion and agar dilution methods according to Clinical and Laboratory Standards Institute (CLSI) recommendations. Minimum inhibitory concentrations (MICs) to 5 antimicrobials (penicillin G, ceftriaxone, ciprofloxacin, spectinomycin, and tetracycline) were determined when feasible. Penicillinase-producing N. gonorrhoeae (PPNG) was analyzed by the paper acidometric method (nitrocefin test). Results: Thirty N. gonorrhoeae isolates from Bangui could be studied, 79 from Yaoundé, 126 from Antananarivo, 56 from Nha Trang, and 126 from Ho Chi Minh Ville in 2004 and 2005. Unfortunately, because of problems of electricity supply, no strains could be recovered for the determination of MICs in Yaoundé, and only 68 strains could be tested in Antananarivo and 121 in Ho Chi Minh Ville. Patterns of resistance were similar in Antananarivo, Bangui, and Yaoundé but different from those observed in Vietnam. Ciprofloxacin was highly effective in Africa, but nearly all strains in Vietnam were resistant to this drug. Overall, ceftriaxon and spectinomycin were the best antibiotics, with one strain resistant to spectinomycin in Antananrivo and one strain resistant to ceftriaxon in Ho Chi Minh Ville. Conclusions: Ciprofloxacin remains highly efficient in Madagascar and Central Africa, ceftriaxone and spectinomycin should be used as the first-line antimicrobial agents in treating gonorrhea in Vietnam.


Nature microbiology | 2016

Global phylogeography and evolutionary history of Shigella dysenteriae type 1.

Elisabeth Njamkepo; Nizar Fawal; Alicia Tran-Dien; Jane Hawkey; N Strockbine; Claire Jenkins; Kaisar A. Talukder; Raymond Bercion; K Kuleshov; Renáta Kolínská; Julie E Russell; L Kaftyreva; M Accou-Demartin; A Karas; Olivier Vandenberg; Alison E. Mather; Carl J. Mason; Andrew J. Page; Thandavarayan Ramamurthy; Chantal Bizet; A Gamian; I Carle; Amy Gassama Sow; Christiane Bouchier; Al Wester; M Lejay-Collin; Marie-Christine Fonkoua; Simon Le Hello; M. J. Blaser; C Jernberg

Together with plague, smallpox and typhus, epidemics of dysentery have been a major scourge of human populations for centuries1. A previous genomic study concluded that Shigella dysenteriae type 1 (Sd1), the epidemic dysentery bacillus, emerged and spread worldwide after the First World War, with no clear pattern of transmission2. This is not consistent with the massive cyclic dysentery epidemics reported in Europe during the eighteenth and nineteenth centuries1,3,4 and the first isolation of Sd1 in Japan in 18975. Here, we report a whole-genome analysis of 331 Sd1 isolates from around the world, collected between 1915 and 2011, providing us with unprecedented insight into the historical spread of this pathogen. We show here that Sd1 has existed since at least the eighteenth century and that it swept the globe at the end of the nineteenth century, diversifying into distinct lineages associated with the First World War, Second World War and various conflicts or natural disasters across Africa, Asia and Central America. We also provide a unique historical perspective on the evolution of antibiotic resistance over a 100-year period, beginning decades before the antibiotic era, and identify a prevalent multiple antibiotic-resistant lineage in South Asia that was transmitted in several waves to Africa, where it caused severe outbreaks of disease.


Journal of Clinical Microbiology | 2009

Population Structure of Human Isolates of Streptococcus agalactiae from Dakar and Bangui

Mathieu Brochet; Elisabeth Couvé; Raymond Bercion; Jean-Marie Sire; Philippe Glaser

Multilocus sequence types of 163 human Streptococcus agalactiae strains isolated in Bangui and Dakar were analyzed. We identified local specificities in the distribution of sequence types and capsular serotypes. However, the overall population structure is similar to that in the United States and Europe, suggesting that few specific clones colonize humans.


AIDS | 2008

Clinical features and etiology of pneumonia in acid-fast bacillus sputum smear-negative HIV-infected patients hospitalized in Asia and Africa.

Muriel Vray; Yves Germani; Sarin Chan; Nguyen H. Duc; Borann Sar; Fatoumata Diene Sarr; Raymond Bercion; Lila Rahalison; Maryvonne Maynard; Pierre L'her; Loïc Chartier; Charles Mayaud

Objectives:To determine the main causes of acid-fast bacillus sputum smear-negative pneumonia in Asian and African HIV-infected patients Design and setting:A prospective multicenter study (ANRS 1260) of consecutive hospitalized patients in tertiary hospitals in Phnom Penh, Ho Chi Minh City, Bangui and Dakar. Intervention:Use of the same clinical, radiological and biological methods at the four sites; regular quality controls of participating laboratories; final review of medical records by experts. Similar criteria used to establish diagnoses. Results:In all 462 patients were enrolled, 291 in Asia and 171 in Africa. The median CD4 cell count was 25 cells/μl. Radiological opacities were diffuse in 42% of patients and localized in 45%. Fiberoptic bronchoscopy was performed in 354 patients, at similar rates in the four sites. A definite and/or probable diagnosis was obtained in 375 patients (81%). Pneumocystis jiroveci pneumonia, bacterial pneumonia, AFB sputum smear-negative tuberculosis and other infections (fungi, parasites, atypical mycobacteria) were diagnosed in respectively 47, 30, 17 and 12% of Asian patients and 3, 48, 26 and 5% of African patients. Conclusion:In South-east Asia, acid-fast bacillus smear-negative pneumonia is caused by a wide variety of pathogens. When possible, fiberoptic bronchoscopy must be performed rapidly if clinical data are not highly suggestive of bacterial pneumonia, Pneumocystis jiroveci pneumonia or tuberculosis. In contrast, in Africa, bacterial pneumonia and tuberculosis are responsible for the large majority of cases. Fiberoptic bronchoscopy should be restricted to patients with clinical and/or radiological findings not suggestive of bacterial pneumonia or tuberculosis, antibiotic failure, and three consecutive negative sputum smears.

Collaboration


Dive into the Raymond Bercion's collaboration.

Top Co-Authors

Avatar

Bruno Pradines

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nathalie Wurtz

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

Eric Baret

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

Gora Lo

Cheikh Anta Diop University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge