Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Raymond C. Pasek is active.

Publication


Featured researches published by Raymond C. Pasek.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Leptin resistance is a secondary consequence of the obesity in ciliopathy mutant mice

Nicolas F. Berbari; Raymond C. Pasek; Erik B. Malarkey; S. M. Zaki Yazdi; Andrew D. McNair; Wesley R. Lewis; Tim R. Nagy; Robert A. Kesterson; Bradley K. Yoder

Although primary cilia are well established as important sensory and signaling structures, their function in most tissues remains unknown. Obesity is a feature associated with some syndromes of cilia dysfunction, such as Bardet-Biedl syndrome (BBS) and Alström syndrome, as well as in several cilia mutant mouse models. Recent data indicate that obesity in BBS mutant mice is due to defects in leptin receptor trafficking and leptin resistance. Furthermore, induction of cilia loss in leptin-responsive proopiomelanocortin neurons results in obesity, implicating cilia on hypothalamic neurons in regulating feeding behavior. Here, we directly test the importance of the cilium as a mediator of the leptin response. In contrast to the current dogma, a longitudinal study of conditional Ift88 cilia mutant mice under different states of adiposity indicates that leptin resistance is present only when mutants are obese. Our studies show that caloric restriction leads to an altered anticipatory feeding behavior that temporarily abrogates the anorectic actions of leptin despite normalized circulating leptin levels. Interestingly, preobese Bbs4 mutant mice responded to the anorectic effects of leptin and did not display other phenotypes associated with defective leptin signaling. Furthermore, thermoregulation and activity measurements in cilia mutant mice are inconsistent with phenotypes previously observed in leptin deficient ob/ob mice. Collectively, these data indicate that cilia are not directly involved in leptin responses and that a defect in the leptin signaling axis is not the initiating event leading to hyperphagia and obesity associated with cilia dysfunction.


Diabetes | 2015

Connective Tissue Growth Factor Modulates Adult β-Cell Maturity and Proliferation to Promote β-Cell Regeneration in Mice

Kimberly G. Riley; Raymond C. Pasek; Matthew F. Maulis; Jennifer Peek; Fabrizio Thorel; David R. Brigstock; Pedro Luis Herrera; Maureen Gannon

Stimulation of endogenous β-cell expansion could facilitate regeneration in patients with diabetes. In mice, connective tissue growth factor (CTGF) is expressed in embryonic β-cells and in adult β-cells during periods of expansion. We discovered that in embryos CTGF is necessary for β-cell proliferation, and increased CTGF in β-cells promotes proliferation of immature (MafA−) insulin-positive cells. CTGF overexpression, under nonstimulatory conditions, does not increase adult β-cell proliferation. In this study, we tested the ability of CTGF to promote β-cell proliferation and regeneration after partial β-cell destruction. β-Cell mass reaches 50% recovery after 4 weeks of CTGF treatment, primarily via increased β-cell proliferation, which is enhanced as early as 2 days of treatment. CTGF treatment increases the number of immature β-cells but promotes proliferation of both mature and immature β-cells. A shortened β-cell replication refractory period is also observed. CTGF treatment upregulates positive cell-cycle regulators and factors involved in β-cell proliferation, including hepatocyte growth factor, serotonin synthesis, and integrin β1. Ex vivo treatment of whole islets with recombinant human CTGF induces β-cell replication and gene expression changes consistent with those observed in vivo, demonstrating that CTGF acts directly on islets to promote β-cell replication. Thus, CTGF can induce replication of adult mouse β-cells given a permissive microenvironment.


American Journal of Physiology-endocrinology and Metabolism | 2013

Advancements and challenges in generating accurate animal models of gestational diabetes mellitus

Raymond C. Pasek; Maureen Gannon

The maintenance of glucose homeostasis during pregnancy is critical to the health and well-being of both the mother and the developing fetus. Strikingly, approximately 7% of human pregnancies are characterized by insufficient insulin production or signaling, resulting in gestational diabetes mellitus (GDM). In addition to the acute health concerns of hyperglycemia, women diagnosed with GDM during pregnancy have an increased incidence of complications during pregnancy as well as an increased risk of developing type 2 diabetes (T2D) later in life. Furthermore, children born to mothers diagnosed with GDM have increased incidence of perinatal complications, including hypoglycemia, respiratory distress syndrome, and macrosomia, as well as an increased risk of being obese or developing T2D as adults. No single environmental or genetic factor is solely responsible for the disease; instead, a variety of risk factors, including weight, ethnicity, genetics, and family history, contribute to the likelihood of developing GDM, making the generation of animal models that fully recapitulate the disease difficult. Here, we discuss and critique the various animal models that have been generated to better understand the etiology of diabetes during pregnancy and its physiological impacts on both the mother and the fetus. Strategies utilized are diverse in nature and include the use of surgical manipulation, pharmacological treatment, nutritional manipulation, and genetic approaches in a variety of animal models. Continued development of animal models of GDM is essential for understanding the consequences of this disease as well as providing insights into potential treatments and preventative measures.


Infection and Immunity | 2010

LT-IIc, a new member of the type II heat-labile enterotoxin family encoded by an Escherichia coli strain obtained from a nonmammalian host.

Hesham F. Nawar; Natalie D. King-Lyons; John C. Hu; Raymond C. Pasek; Terry D. Connell

ABSTRACT Two families of bacterial heat-labile enterotoxins (HLTs) have been described: the type I HLTs are comprised of cholera toxin (CT) of Vibrio cholerae, LT-I of Escherichia coli, and several related HLTs; the type II HLTs are comprised of LT-IIa and LT-IIb. Herein, we report LT-IIc, a new type II HLT encoded from an enterotoxigenic E. coli (ETEC) strain isolated from an avian host. Using a mouse Y1 adrenal cell bioassay, LT-IIc was shown to be less cytotoxic than CT, LT-IIa, or LT-IIb. Cytotoxicity of LT-IIc was partially neutralized by antisera recognizing LT-IIa or LT-IIb but not by anti-CT antiserum. Genes encoding putative A polypeptide and B polypeptides of LT-IIc were arranged in an operon which was flanked by potential prophage sequences. Analysis of the nucleotide and predicted amino acid sequences demonstrated that the A polypeptide of LT-IIc has moderate homology to the A polypeptides of CT and LT-I and high homology to the A polypeptides of LT-IIa and LT-IIb. The B polypeptide of LT-IIc exhibited no significant homology to the B polypeptides of CT and LT-I and only moderate homology to the B polypeptides of LT-IIa and LT-IIb. The binding pattern of LT-IIc for gangliosides was distinctive from that of either LT-IIa or LT-IIb. The data suggest that other types of the type II HLT subfamily are circulating in the environment and that host specificity of type II HLT is likely governed by changes in the B polypeptide which mediate binding to receptors.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2014

Deletion of airway cilia results in noninflammatory bronchiectasis and hyperreactive airways

Sandra K. Gilley; Antine E. Stenbit; Raymond C. Pasek; Kelli M. Sas; Stacy L. Steele; May Y. Amria; Marlene A. Bunni; Kimberly P. Estell; Lisa M. Schwiebert; Patrick A. Flume; Monika Gooz; Courtney J. Haycraft; Bradley K. Yoder; Caroline Miller; Jacqueline A. Pavlik; Grant A. Turner; Joseph H. Sisson; P. Darwin Bell

The mechanisms for the development of bronchiectasis and airway hyperreactivity have not been fully elucidated. Although genetic, acquired diseases and environmental influences may play a role, it is also possible that motile cilia can influence this disease process. We hypothesized that deletion of a key intraflagellar transport molecule, IFT88, in mature mice causes loss of cilia, resulting in airway remodeling. Airway cilia were deleted by knockout of IFT88, and airway remodeling and pulmonary function were evaluated. In IFT88(-) mice there was a substantial loss of airway cilia on respiratory epithelium. Three months after the deletion of cilia, there was clear evidence for bronchial remodeling that was not associated with inflammation or apparent defects in mucus clearance. There was evidence for airway epithelial cell hypertrophy and hyperplasia. IFT88(-) mice exhibited increased airway reactivity to a methacholine challenge and decreased ciliary beat frequency in the few remaining cells that possessed cilia. With deletion of respiratory cilia there was a marked increase in the number of club cells as seen by scanning electron microscopy. We suggest that airway remodeling may be exacerbated by the presence of club cells, since these cells are involved in airway repair. Club cells may be prevented from differentiating into respiratory epithelial cells because of a lack of IFT88 protein that is necessary to form a single nonmotile cilium. This monocilium is a prerequisite for these progenitor cells to transition into respiratory epithelial cells. In conclusion, motile cilia may play an important role in controlling airway structure and function.


Molecular metabolism | 2015

Macrophages are essential for CTGF-mediated adult β-cell proliferation after injury.

Kimberly G. Riley; Raymond C. Pasek; Matthew F. Maulis; Jennifer C. Dunn; W. Reid Bolus; Peggy L. Kendall; Alyssa H. Hasty; Maureen Gannon

Objective Promotion of endogenous β-cell mass expansion could facilitate regeneration in patients with diabetes. We discovered that the secreted protein CTGF (aka CCN2) promotes adult β-cell replication and mass regeneration after injury via increasing β-cell immaturity and shortening the replicative refractory period. However, the mechanism of CTGF-mediated β-cell proliferation is unknown. Here we focused on whether CTGF alters cells of the immune system to enhance β-cell replication. Methods Using mouse models for 50% β-cell ablation and conditional, β-cell-specific CTGF induction, we assessed changes in immune cell populations by performing immunolabeling and gene expression analyses. We tested the requirement for macrophages in CTGF-mediated β-cell proliferation via clodronate-based macrophage depletion. Results CTGF induction after 50% β-cell ablation increased both macrophages and T-cells in islets. An upregulation in the expression of several macrophage and T-cell chemoattractant genes was also observed in islets. Gene expression analyses suggest an increase in M1 and a decrease in M2 macrophage markers. Depletion of macrophages (without changes in T cell number) blocked CTGF-mediated β-cell proliferation and prevented the increase in β-cell immaturity. Conclusions Our data show that macrophages are critical for CTGF-mediated adult β-cell proliferation in the setting of partial β-cell ablation. This is the first study to link a specific β-cell proliferative factor with immune-mediated β-cell proliferation in a β-cell injury model.


Developmental Biology | 2016

Coiled-coil domain containing 42 (Ccdc42) is necessary for proper sperm development and male fertility in the mouse.

Raymond C. Pasek; Erik B. Malarkey; Nicolas F. Berbari; Neeraj Sharma; Robert A. Kesterson; Laura L. Tres; Abraham L. Kierszenbaum; Bradley K. Yoder

Spermiogenesis is the differentiation of spermatids into motile sperm consisting of a head and a tail. The head harbors a condensed elongated nucleus partially covered by the acrosome-acroplaxome complex. Defects in the acrosome-acroplaxome complex are associated with abnormalities in sperm head shaping. The head-tail coupling apparatus (HTCA), a complex structure consisting of two cylindrical microtubule-based centrioles and associated components, connects the tail or flagellum to the sperm head. Defects in the development of the HTCA cause sperm decapitation and disrupt sperm motility, two major contributors to male infertility. Here, we provide data indicating that mutations in the gene Coiled-coil domain containing 42 (Ccdc42) is associated with malformation of the mouse sperm flagella. In contrast to many other flagella and motile cilia genes, Ccdc42 expression is only observed in the brain and developing sperm. Male mice homozygous for a loss-of-function Ccdc42 allele (Ccdc42(KO)) display defects in the number and location of the HTCA, lack flagellated sperm, and are sterile. The testes enriched expression of Ccdc42 and lack of other phenotypes in mutant mice make it an ideal candidate for screening cases of azoospermia in humans.


PLOS Genetics | 2016

Mutation of Growth Arrest Specific 8 Reveals a Role in Motile Cilia Function and Human Disease.

Wesley R. Lewis; Erik B. Malarkey; Douglas Tritschler; Raqual Bower; Raymond C. Pasek; Jonathan D. Porath; Susan E. Birket; Sophie Saunier; Corinne Antignac; Margaret W. Leigh; Maimoona A. Zariwala; Anil K. Challa; Robert A. Kesterson; Steven M. Rowe; Iain A. Drummond; John M. Parant; Friedhelm Hildebrandt; Mary E. Porter; Bradley K. Yoder; Nicolas F. Berbari

Ciliopathies are genetic disorders arising from dysfunction of microtubule-based cellular appendages called cilia. Different cilia types possess distinct stereotypic microtubule doublet arrangements with non-motile or ‘primary’ cilia having a 9+0 and motile cilia have a 9+2 array of microtubule doublets. Primary cilia are critical sensory and signaling centers needed for normal mammalian development. Defects in their structure/function result in a spectrum of clinical and developmental pathologies including abnormal neural tube and limb patterning. Altered patterning phenotypes in the limb and neural tube are due to perturbations in the hedgehog (Hh) signaling pathway. Motile cilia are important in fluid movement and defects in motility result in chronic respiratory infections, altered left-right asymmetry, and infertility. These features are the hallmarks of Primary Ciliary Dyskinesia (PCD, OMIM 244400). While mutations in several genes are associated with PCD in patients and animal models, the genetic lesion in many cases is unknown. We assessed the in vivo functions of Growth Arrest Specific 8 (GAS8). GAS8 shares strong sequence similarity with the Chlamydomonas Nexin-Dynein Regulatory Complex (NDRC) protein 4 (DRC4) where it is needed for proper flagella motility. In mammalian cells, the GAS8 protein localizes not only to the microtubule axoneme of motile cilia, but also to the base of non-motile cilia. Gas8 was recently implicated in the Hh signaling pathway as a regulator of Smoothened trafficking into the cilium. Here, we generate the first mouse with a Gas8 mutation and show that it causes severe PCD phenotypes; however, there were no overt Hh pathway phenotypes. In addition, we identified two human patients with missense variants in Gas8. Rescue experiments in Chlamydomonas revealed a subtle defect in swim velocity compared to controls. Further experiments using CRISPR/Cas9 homology driven repair (HDR) to generate one of these human missense variants in mice demonstrated that this allele is likely pathogenic.


American Journal of Physiology-endocrinology and Metabolism | 2016

Connective tissue growth factor is critical for proper β-cell function and pregnancy-induced β-cell hyperplasia in adult mice

Raymond C. Pasek; Jennifer C. Dunn; Joseph M. Elsakr; Mounika Aramandla; Anveetha R. Matta; Maureen Gannon

During pregnancy, maternal β-cells undergo compensatory changes, including increased β-cell mass and enhanced glucose-stimulated insulin secretion. Failure of these adaptations to occur results in gestational diabetes mellitus. The secreted protein connective tissue growth factor (CTGF) is critical for normal β-cell development and promotes regeneration after partial β-cell ablation. During embryogenesis, CTGF is expressed in pancreatic ducts, vasculature, and β-cells. In adult pancreas, CTGF is expressed only in the vasculature. Here we show that pregnant mice with global Ctgf haploinsufficiency (Ctgf(LacZ/+)) have an impairment in maternal β-cell proliferation; no difference was observed in virgin Ctgf(LacZ/+) females. Using a conditional CTGF allele, we found that mice with a specific inactivation of CTGF in endocrine cells (Ctgf(ΔEndo)) develop gestational diabetes during pregnancy, but this is due to a reduction in glucose-stimulated insulin secretion rather than impaired maternal β-cell proliferation. Moreover, virgin Ctgf(ΔEndo) females also display impaired GSIS with glucose intolerance, indicating that underlying β-cell dysfunction precedes the development of gestational diabetes in this animal model. This is the first time a role for CTGF in β-cell function has been reported.


Methods in Cell Biology | 2009

Utilization of Conditional Alleles to Study the Role of the Primary Cilium in Obesity

Robert A. Kesterson; Nicolas F. Berbari; Raymond C. Pasek; Bradley K. Yoder

Ciliopathies are a group of human diseases that involve dysfunction of the cilium. Human patients with mutations in ciliary proteins can exhibit a wide range of phenotypes, one of which is obesity. This is seen in patients with Bardet-Biedl syndrome (BBS) and Alström syndrome (ALMS). Both of these disorders are caused by mutations in proteins that localize to the cilium or the basal body at the base of the cilium. These rare human disorders and their corresponding mouse models together with genetic approaches to disrupt cilia on specific cell types are beginning to uncover the connection between the cilium and energy homeostasis. Here we will review the current data on how cilia are thought to be involved in energy homeostatic pathways and discuss several key factors to consider when utilizing conditional approaches to evaluate ciliary function and their link to obesity.

Collaboration


Dive into the Raymond C. Pasek's collaboration.

Top Co-Authors

Avatar

Bradley K. Yoder

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Nicolas F. Berbari

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Maureen Gannon

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Erik B. Malarkey

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Robert A. Kesterson

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Wesley R. Lewis

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Abraham L. Kierszenbaum

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Anil K. Challa

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Antine E. Stenbit

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge