Raymond G. Finocchiaro
United States Geological Survey
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Raymond G. Finocchiaro.
Science of The Total Environment | 2015
Brian A. Tangen; Raymond G. Finocchiaro; Robert A. Gleason
Wetland restoration has been suggested as policy goal with multiple environmental benefits including enhancement of atmospheric carbon sequestration. However, there are concerns that increased methane (CH4) emissions associated with restoration may outweigh potential benefits. A comprehensive, 4-year study of 119 wetland catchments was conducted in the Prairie Pothole Region of the north-central U.S. to assess the effects of land use on greenhouse gas (GHG) fluxes and soil properties. Results showed that the effects of land use on GHG fluxes and abiotic soil properties differed with respect to catchment zone (upland, wetland), wetland classification, geographic location, and year. Mean CH4 fluxes from the uplands were predictably low (<0.02 g CH4 m(-2) day(-1)), while wetland zone CH4 fluxes were much greater (<0.001-3.9 g CH4 m(-2) day(-1)). Mean cumulative seasonal CH4 fluxes ranged from roughly 0-650 g CH4 m(-2), with an overall mean of approximately 160 g CH4 m(-2). These maximum cumulative CH4 fluxes were nearly 3 times as high as previously reported in North America. The overall magnitude and variability of N2O fluxes from this study (<0.0001-0.0023 g N2O m(-2) day(-1)) were comparable to previously reported values. Results suggest that soil organic carbon is lost when relatively undisturbed catchments are converted for agriculture, and that when non-drained cropland catchments are restored, CH4 fluxes generally are not different than the pre-restoration baseline. Conversely, when drained cropland catchments are restored, CH4 fluxes are noticeably higher. Consequently, it is important to consider the type of wetland restoration (drained, non-drained) when assessing restoration benefits. Results also suggest that elevated N2O fluxes from cropland catchments likely would be reduced through restoration. The overall variability demonstrated by this study was consistent with findings of other wetland investigations and underscores the difficulty in quantifying the GHG balance of wetland systems.
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | 2017
Yun Yang; Martha C. Anderson; Feng Gao; Christopher R. Hain; William P. Kustas; Tilden P. Meyers; Wade T. Crow; Raymond G. Finocchiaro; Jason A. Otkin; Liang Sun; Yang Yang
Soil drainage is a widely used agricultural practice in the midwest USA to remove excess soil water to potentially improve the crop yield. Research shows an increasing trend in baseflow and streamflow in the midwest over the last 60 years, which may be related to artificial drainage. Subsurface drainage (i.e., tile) in particular may have strongly contributed to the increase in these flows, because of its extensive use and recent gain in the popularity as a yield-enhancement practice. However, how evapotranspiration (ET) is impacted by tile drainage on a regional level is not well-documented. To explore spatial and temporal ET patterns and their relationship to tile drainage, we applied an energy balance-based multisensor data fusion method to estimate daily 30-m ET over an intensively tile-drained area in South Dakota, USA, from 2005 to 2013. Results suggest that tile drainage slightly decreases the annual cumulative ET, particularly during the early growing season. However, higher mid-season crop water use suppresses the extent of the decrease of the annual cumulative ET that might be anticipated from widespread drainage. The regional water balance analysis during the growing season demonstrates good closure, with the average residual from 2005 to 2012 as low as -3 mm. As an independent check of the simulated ET at the regional scale, the water balance analysis lends additional confidence to the study. The results of this study improve our understanding of the influence of agricultural drainage practices on regional ET, and can affect future decision making regarding tile drainage systems.
Wetlands Ecology and Management | 2014
Raymond G. Finocchiaro; Brian A. Tangen; Robert A. Gleason
Wetland catchments are major ecosystems in the Prairie Pothole Region (PPR) and play an important role in greenhouse gases (GHG) flux. However, there is limited information regarding effects of land-use on GHG fluxes from these wetland systems. We examined the effects of grazing and haying, two common land-use practices in the region, on GHG fluxes from wetland catchments during 2007 and 2008. Fluxes of methane (CH4), nitrous oxide (N2O), and carbon dioxide (CO2), along with soil water content and temperature, were measured along a topographic gradient every other week during the growing season near Ipswich, SD, USA. Closed, opaque chambers were used to measure fluxes of soil and plant respiration from native sod catchments that were grazed or left idle, and from recently restored catchments which were seeded with native plant species; half of these catchments were hayed once during the growing season. Catchments were adjacent to each other and had similar soils, soil nitrogen and organic carbon content, precipitation, and vegetation. When compared with idle catchments, grazing as a land-use had little effect on GHG fluxes. Likewise, haying had little effect on fluxes of CH4 and N2O compared with non-hayed catchments. Haying, however, did have a significant effect on combined soil and vegetative CO2 flux in restored wetland catchments owing to the immediate and comprehensive effect haying has on plant productivity. This study also examined soil conditions that affect GHG fluxes and provides cumulative annual estimates of GHG fluxes from wetland catchment in the PPR.
Global Change Biology | 2017
Paula Dalcin Martins; David W. Hoyt; Sheel Bansal; Christopher T. Mills; Malak M. Tfaily; Brian A. Tangen; Raymond G. Finocchiaro; Michael D. Johnston; Brandon C. McAdams; Matthew J. Solensky; Garrett J. Smith; Yu-Ping Chin; Michael J. Wilkins
Abstract Inland waters are increasingly recognized as critical sites of methane emissions to the atmosphere, but the biogeochemical reactions driving such fluxes are less well understood. The Prairie Pothole Region (PPR) of North America is one of the largest wetland complexes in the world, containing millions of small, shallow wetlands. The sediment pore waters of PPR wetlands contain some of the highest concentrations of dissolved organic carbon (DOC) and sulfur species ever recorded in terrestrial aquatic environments. Using a suite of geochemical and microbiological analyses, we measured the impact of sedimentary carbon and sulfur transformations in these wetlands on methane fluxes to the atmosphere. This research represents the first study of coupled geochemistry and microbiology within the PPR and demonstrates how the conversion of abundant labile DOC pools into methane results in some of the highest fluxes of this greenhouse gas to the atmosphere ever reported. Abundant DOC and sulfate additionally supported some of the highest sulfate reduction rates ever measured in terrestrial aquatic environments, which we infer to account for a large fraction of carbon mineralization in this system. Methane accumulations in zones of active sulfate reduction may be due to either the transport of free methane gas from deeper locations or the co‐occurrence of methanogenesis and sulfate reduction. If both respiratory processes are concurrent, any competitive inhibition of methanogenesis by sulfate‐reducing bacteria may be lessened by the presence of large labile DOC pools that yield noncompetitive substrates such as methanol. Our results reveal some of the underlying mechanisms that make PPR wetlands biogeochemical hotspots, which ultimately leads to their critical, but poorly recognized role in regional greenhouse gas emissions. &NA; Wetland sediments recovered from the Prairie Pothole Region of North America host microbial communities catalyzing some of the highest sulfate reduction rates ever measured. Concurrently, these same sediments drive some of the highest methane fluxes to atmosphere ever measured. Together, these data indicate that the PPR may play an oversized role in carbon cycling and greenhouse gas fluxes to the atmosphere. Figure. No caption available.
Journal of Fish and Wildlife Management | 2017
Brian A. Tangen; Raymond G. Finocchiaro
Abstract The enhancement of agricultural lands through the use of artificial drainage systems is a common practice throughout the United States, and recently the use of this practice has expanded i...
Ecological Restoration | 2016
Raymond G. Finocchiaro; Dave A. Azure; Michael A. Vargo
©2016 by the Board of Regents of the University of Wisconsin System. A Novel, Non-Removal Method for Closing Drainage Tile for Ecological Restorations Raymond G. Finocchiaro (Corresponding author: U.S. Geological Survey, Northern Prairie Wildlife Research Center, Jamestown, ND, [email protected]), Dave A. Azure (United States Fish and Wildlife Service, Region 6, Arrowwood National Wildlife Refuge, Pingree, ND) and Michael A. Vargo (Prime Resins Inc., Conyers, GA).
Wetlands | 2016
Sheel Bansal; Brian A. Tangen; Raymond G. Finocchiaro
Scientific Investigations Report | 2009
Robert A. Gleason; Brian A. Tangen; Murray K. Laubhan; Raymond G. Finocchiaro; John F. Stamm
Wetlands | 2016
Brian A. Tangen; Raymond G. Finocchiaro; Robert A. Gleason; Charles F. Dahl
Scientific Investigations Report | 2013
Brian A. Tangen; Raymond G. Finocchiaro; Robert A. Gleason; Michael J. Rabenberg; Charles F. Dahl; Mike J. Ell