Raymond L. D. Whitby
Nazarbayev University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Raymond L. D. Whitby.
Science of The Total Environment | 2008
Andrew B. Cundy; Laurence Hopkinson; Raymond L. D. Whitby
Reactions involving iron play a major role in the environmental cycling of a wide range of important organic, inorganic and radioactive contaminants. Consequently, a range of environmental clean-up technologies have been proposed or developed which utilise iron chemistry to remediate contaminated land and surface and subsurface waters, e.g. the use of injected zero zero-valent iron nanoparticles to remediate organic contaminant plumes; the generation of iron oxyhydroxide-based substrates for arsenic removal from contaminated waters; etc. This paper reviews some of the latest iron-based technologies in contaminated land and groundwater remediation, their current state of development, and their potential applications and limitations.
ACS Nano | 2012
Raymond L. D. Whitby; Vladimir M. Gun’ko; Alina V. Korobeinyk; Rosa Busquets; Andrew B. Cundy; Krisztina László; J. Skubiszewska-Zięba; R. Leboda; Etelka Tombácz; Ildikó Y. Tóth; Krisztina Kovács; Sergey V. Mikhalovsky
The extensive oxygen-group functionality of single-layer graphene oxide proffers useful anchor sites for chemical functionalization in the controlled formation of graphene architecture and composites. However, the physicochemical environment of graphene oxide and its single-atom thickness facilitate its ability to undergo conformational changes due to responses to its environment, whether pH, salinity, or temperature. Here, we report experimental and molecular simulations confirming the conformational changes of single-layer graphene oxide sheets from the wet or dry state. MD, PM6, and ab initio simulations of dry SLG and dry and wetted SLGO and electron microscopy imaging show marked differences in the properties of the materials that can explain variations in previously observed results for the pH dependent behavior of SLGO and electrical conductivity of chemically modified graphene-polymer composites. Understanding the physicochemical responses of graphene and graphene oxide architecture and performing selected chemistry will ultimately facilitate greater tunability of their performance.
Journal of Hazardous Materials | 2011
Irina N. Savina; Christopher J. English; Raymond L. D. Whitby; Yishan Zheng; André Leistner; Sergey V. Mikhalovsky; Andrew B. Cundy
Novel nanocomposite materials where iron nanoparticles are embedded into the walls of a macroporous polymer were produced and their efficiency for the removal of As(III) from aqueous media was studied. Nanocomposite gels containing α-Fe(2)O(3) and Fe(3)O(4) nanoparticles were prepared by cryopolymerisation resulting in a monolithic structure with large interconnected pores up to 100 μm in diameter and possessing a high permeability (ca. 3 × 10(-3) ms(-1)). The nanocomposite devices showed excellent capability for the removal of trace concentrations of As(III) from solution, with a total capacity of up to 3mg As/g of nanoparticles. The leaching of iron was minimal and the device could operate in a pH range 3-9 without diminishing removal efficiency. The effect of competing ions such as SO(4)(2-) and PO(4)(3-) was negligible. The macroporous composites can be easily configured into a variety of shapes and structures and the polymer matrix can be selected from a variety of monomers, offering high potential as flexible metal cation remediation devices.
Chemical Communications | 2011
Raymond L. D. Whitby; Alina V. Korobeinyk; V.M. Gun'ko; Rosa Busquets; Andrew B. Cundy; Krisztina László; J. Skubiszewska-Zięba; R. Leboda; Etelka Tombácz; Ildikó Y. Tóth; Krisztina Kovács; Sergey V. Mikhalovsky
Single-layer graphene oxides (SLGOs) undergo morphological changes depending on the pH of the system and may account for restricted chemical reactivity. Herein, SLGO may also capture nanoparticles through layering and enveloping when the pH is changed, demonstrating potential usefulness in drug delivery or waste material capture.
Nanotechnology | 2010
K. Matsumoto; C. Sato; Y. Naka; Raymond L. D. Whitby; Norio Shimizu
Low concentrations (0.11-1.7 microg ml(-1)) of functionalized carbon nanotubes (CNTs), which are multi-walled CNTs modified by amino groups, when added with nerve growth factor (NGF), promoted outgrowth of neuronal neurites in dorsal root ganglion (DRG) neurons and rat pheochromocytoma cell line PC12h cells in culture media. The quantity of active extracellular signal-regulated kinase (ERK) was higher after the addition of both 0.85 microg ml(-1) CNTs and NGF than that with NGF alone. CNTs increased the number of cells with neurite outgrowth in DRG neurons and PC12h cells after the inhibition of the ERK signaling pathway using a mitogen-activated protein kinase (MAPK)/ERK kinase (MEK) inhibitor. Active ERK proteins were detected in MEK inhibitor-treated neurons after the addition of CNTs to the culture medium. These results demonstrate that CNTs may stimulate neurite outgrowth by activation of the ERK signaling pathway. Thus, CNTs are biocompatible and are promising candidates for biological applications and devices.
ACS Nano | 2014
Raymond L. D. Whitby
Single layer graphene and graphene oxide feature useful and occasionally unique properties by virtue of their two-dimensional structure. Given that there is a strong correlation between graphene architecture and its conductive, mechanical, chemical, and sorptive properties, which lead to useful technologies, the ability to systematically deform graphene into three-dimensional structures, therefore, provides a controllable, scalable route toward tailoring such properties in the final system. However, the advent of chemical methods to control graphene architecture is still coming to fruition and requires focused attention. The flexibility of the graphene system and the direct and indirect methods available to induce morphology changes of graphene sheets are first discussed in this review. Focus is then given toward chemical reactions that influence the shape of presynthesized graphene and graphene oxide sheets, from which a toolbox can be extrapolated and used in controlling the spatial arrangement of graphene sheets within composite materials and ultimately tailoring graphene-based device performance. Finally, the properties of three-dimensionally controlled graphene-based systems are highlighted for their use as batteries, strengthening additives, gas or liquid sorbents, chemical reactor platforms, and supercapacitors.
Angewandte Chemie | 2012
Kseniia V. Katok; Raymond L. D. Whitby; Takahiro Fukuda; Toru Maekawa; Igor Bezverkhyy; Sergey V. Mikhalovsky; Andrew B. Cundy
Breaking through the stoichiometry barrier: as the diameter of silver particles is decreased below a critical size of 32 nm, the molar ratio of aqueous Hg(II) to Ag(0) drastically increases beyond the conventional Hg/Ag ratio of 0.5:1, leading to hyperstoichiometry with a maximum ratio of 1.125:1. Therein, around 99% of the initial silver is retained to rapidly form a solid amalgam with reduced mercury.
Journal of Colloid and Interface Science | 2011
Kateryna V. Voitko; Raymond L. D. Whitby; Vladimir M. Gun’ko; Olga M. Bakalinska; Mykola T. Kartel; Krisztina László; Andrew B. Cundy; Sergey V. Mikhalovsky
Chemical and structural factors of carbon materials affect their activity in adsorption and surface reactions in aqueous media. Decomposition of hydrogen peroxide studied is a probe reaction for exploring parameters of carbons that might be involved, such as specific surface area, nitrogen and oxygen doping and conformational changes. To date, a detailed comparison of the behavior of carbon nanoscale (Carbon Nanotubes, CNT, Single Layer Graphene Oxide, SLGO) with macroscale (Activated carbons, AC) materials in this reaction has not been forthcoming. Herein, we demonstrate that on their first cycle, ACs in doped and undoped forms outperform all nanoscale carbons tested in the H(2)O(2) decomposition. Among the nanocarbons, nitrogen-doped CNT exhibited the highest activity in this reaction. However, subsequent recycling of each carbon, without chemical regeneration between uses, reveals SLGO exhibits greater reaction rate stability over an extended number of cycles (n>8) than other carbons including nitrogen-doped CNT and ACs. The effects of pH, temperature and concentration on the reaction were analyzed. Quantum-chemical modeling and reaction kinetics analysis reveal key processes likely involved in hydrogen peroxide decomposition and show evidence that the reaction rate is linked to active sites with N-and O-containing functionalities.
ChemPhysChem | 2001
Raymond L. D. Whitby; Wen Kuang Hsu; Chris Boothroyd; Peter K. Fearon; Harold W. Kroto; David R. M. Walton
An insulated nanotube wire is formed by the binary phase of layered tungsten disulphide and carbon nanotubes (shown in the HRTEM image) generated by the sulphidization of tungsten oxide coated multiwalled carbon nanotubes at 900 °C. Thermogravimetric analysis shows that the tungsten disulphide coat acts as an antioxidant.
Chemical Physics Letters | 2002
Raymond L. D. Whitby; W. K. Hsu; T.H. Lee; Chris Boothroyd; H.W. Kroto; D. R. M. Walton
A range of elegant tubular and conical nanostructures has been created by template growth of (WS2)n layers on the surfaces of single-walled carbon nanotube bundles. The structures exhibit remarkably perfect straight segments together with interesting complexities at the intersections, which are discussed here in detail in order to enhance understanding of the structural features governing tube growth.