Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Raymond Pieters is active.

Publication


Featured researches published by Raymond Pieters.


Food and Chemical Toxicology | 2002

Methods of in vitro toxicology

Gerhard Eisenbrand; B.L. Pool-Zobel; V.A Baker; M Balls; Bas J. Blaauboer; Alan R. Boobis; A Carere; S Kevekordes; J.C. Lhuguenot; Raymond Pieters; J Kleiner

In vitro methods are common and widely used for screening and ranking chemicals, and have also been taken into account sporadically for risk assessment purposes in the case of food additives. However, the range of food-associated compounds amenable to in vitro toxicology is considered much broader, comprising not only natural ingredients, including those from food preparation, but also compounds formed endogenously after exposure, permissible/authorised chemicals including additives, residues, supplements, chemicals from processing and packaging and contaminants. A major promise of in vitro systems is to obtain mechanism-derived information that is considered pivotal for adequate risk assessment. This paper critically reviews the entire process of risk assessment by in vitro toxicology, encompassing ongoing and future developments, with major emphasis on cytotoxicity, cellular responses, toxicokinetics, modelling, metabolism, cancer-related endpoints, developmental toxicity, prediction of allergenicity, and finally, development and application of biomarkers. It describes in depth the use of in vitro methods in strategies for characterising and predicting hazards to the human. Major weaknesses and strengths of these assay systems are addressed, together with some key issues concerning major research priorities to improve hazard identification and characterisation of food-associated chemicals.


Particle and Fibre Toxicology | 2011

In vitro toxicity of particulate matter (PM) collected at different sites in the Netherlands is associated with PM composition, size fraction and oxidative potential - the RAPTES project

Maaike Steenhof; Ilse Gosens; Maciej Strak; Krystal J. Godri; Gerard Hoek; Flemming R. Cassee; Ian Mudway; Frank J. Kelly; Roy M. Harrison; Erik Lebret; Bert Brunekreef; Nicole A.H. Janssen; Raymond Pieters

BackgroundAmbient particulate matter (PM) exposure is associated with respiratory and cardiovascular morbidity and mortality. To what extent such effects are different for PM obtained from different sources or locations is still unclear. This study investigated the in vitro toxicity of ambient PM collected at different sites in the Netherlands in relation to PM composition and oxidative potential.MethodPM was sampled at eight sites: three traffic sites, an underground train station, as well as a harbor, farm, steelworks, and urban background location. Coarse (2.5-10 μm), fine (< 2.5 μm) and quasi ultrafine PM (qUF; < 0.18 μm) were sampled at each site. Murine macrophages (RAW 264.7 cells) were exposed to increasing concentrations of PM from these sites (6.25-12.5-25-50-100 μg/ml; corresponding to 3.68-58.8 μg/cm2). Following overnight incubation, MTT-reduction activity (a measure of metabolic activity) and the release of pro-inflammatory markers (Tumor Necrosis Factor-alpha, TNF-α; Interleukin-6, IL-6; Macrophage Inflammatory Protein-2, MIP-2) were measured. The oxidative potential and the endotoxin content of each PM sample were determined in a DTT- and LAL-assay respectively. Multiple linear regression was used to assess the relationship between the cellular responses and PM characteristics: concentration, site, size fraction, oxidative potential and endotoxin content.ResultsMost PM samples induced a concentration-dependent decrease in MTT-reduction activity and an increase in pro-inflammatory markers with the exception of the urban background and stop & go traffic samples. Fine and qUF samples of traffic locations, characterized by a high concentration of elemental and organic carbon, induced the highest pro-inflammatory activity. The pro-inflammatory response to coarse samples was associated with the endotoxin level, which was found to increase dramatically during a three-day sample concentration procedure in the laboratory. The underground samples, characterized by a high content of transition metals, showed the largest decrease in MTT-reduction activity. PM size fraction was not related to MTT-reduction activity, whereas there was a statistically significant difference in pro-inflammatory activity between Fine and qUF PM. Furthermore, there was a statistically significant negative association between PM oxidative potential and MTT-reduction activity.ConclusionThe response of RAW264.7 cells to ambient PM was markedly different using samples collected at various sites in the Netherlands that differed in their local PM emission sources. Our results are in support of other investigations showing that the chemical composition as well as oxidative potential are determinants of PM induced toxicity in vitro.


Clinical & Experimental Allergy | 2006

Ultrafine but not fine particulate matter causes airway inflammation and allergic airway sensitization to co‐administered antigen in mice

C. de Haar; Ine Hassing; Marianne Bol; Rob Bleumink; Raymond Pieters

Background Airborne particulate matter (PM) is an important factor associated with the enhanced prevalence of respiratory allergy. The PM adjuvant activity on allergic sensitization is a possible mechanism of action involved, and the induction of airway inflammation is suggested to be of importance in PM‐induced adjuvant activity.


Toxicology Letters | 1999

AHTN and HHCB show weak estrogenic--but no uterotrophic activity.

Willem Seinen; Josephine G. Lemmen; Raymond Pieters; Erik M.J Verbruggen; Bart van der Burg

The ubiquitous presence of the polycyclic musks AHTN (6-acetyl-1,1,2,4,4,7-hexamethyltetraline) and HHCB (1,2,4,6,7,8-hexahydro-4,6,6,7,8-hexamethylcyclopenta-gamma-2-b enzopyreen) in surface waters and their identification in human milk fat together with their polycyclic nature, which makes them potential candidates for interference with estrogen receptors, prompted us to assess these compounds for their potential estrogenic effects. We therefore investigated the effects of AHTN and HHCB in ERalpha- and ERbeta-dependent gene transcription assays with Human Embryonal Kidney 293 (HEK293) cells, which have proven to be very suitable to estimate the estrogenic activity of compounds with low binding activity (Kuiper, G.G., Lemmen, J.G., Carlsson, B., Corton, J.C., Safe, S.H., Van der Saag, P.T., Van der Burg, B., Gustafsson, J.A., 1998. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology 139, 4252-4264). Both AHTN and HHCB were found to induce a slight but dose-dependent stimulation of transcriptional activity in the transiently ERalpha transfected HEK293 cells. This weak estrogenic response was not observed in the ERbeta transiently transfected cells. However, these cells were less responsive to estradiol than the ERalpha transfected HEK293 cells. Also, no significant increase in transcriptional activity was observed in HEK293 cell lines, permanently expressing the same estrogen-responsive reporter gene construct and either ERalpha or ERbeta. In the classical uterine weight assay performed in juvenile Balb/c mice, no uterotrophic activity of AHTN and HHCB was noted at relatively high dietary exposure levels up to 50 and 300 ppm, respectively, at which levels an increase in liver weight was evident. Also the vitellogenin production by carp hepatocytes, a sensitive marker of estrogenic activity, was not affected by these two fragrance materials (Smeets, J.M.W., Rouhani Rankouhi, T., Nichols, K.M., Komen, H., Kaminsky, N.E., Giesy, J.P., Van den Berg, M., 1999. In vitro vitellogenin production by carp (Cyprimus carpio) hepatocytes as a screening method for determining (anti-) estrogenic activity of xenobiotics. Toxicol. Appl. Pharmacol., 157, 68-76). Therefore it is concluded that these compounds have very weak estrogenic potency, too weak to induce estrogenic effects in wildlife species or humans at the current levels of exposure. These results give further support to the promiscuity of estrogen receptors.


The Journal of Allergy and Clinical Immunology | 2008

Lung dendritic cells are stimulated by ultrafine particles and play a key role in particle adjuvant activity

Colin de Haar; Mirjam Kool; Ine Hassing; Marianne Bol; Bart N. Lambrecht; Raymond Pieters

BACKGROUND The adjuvant activity of air pollution particles on allergic airway sensitization is well known, but the cellular mechanisms underlying this adjuvant potential are not clear. OBJECTIVE We sough to study the role of dendritic cells and the costimulatory molecules CD80 and CD86 in the adjuvant activity of ultrafine carbon black particles (CBP). METHODS The proliferation of CFSE-labeled DO11.10 CD4 cells was studied after intranasal exposure to particles and ovalbumin (OVA). Next the frequency of myeloid dendritic cells (mDCs) and plasmacytoid dendritic cells and their expression of CD80 and CD86 were studied in the peribronchial lymph nodes (PBLNs). The expression of costimulatory molecules was also studied on bone marrow-derived mDCs after exposure to CBPs in vitro, and the importance of costimulation in CBP adjuvant activity was assessed by using CD80/CD86-deficient mice or cytotoxic T lymphocyte-associated antigen 4 (CTLA4)-Ig in vivo. RESULTS Our data show that CBPs plus OVA caused proliferation of DO11.10 CD4 cells and high levels of cytokine production in the PBLNs. Furthermore, the combined CBP plus OVA exposure increased the number of mDCs and expression of costimulatory molecules in the PBLNs. In addition, CBPs upregulated the expression of CD80/CD86 molecules on dendritic cells in vitro, which are necessary for the particle adjuvant effects in vivo. CONCLUSION Together this study shows the importance of dendritic cells and costimulation in particle adjuvant activity. Furthermore, we show for the first time that CBPs can also directly induce maturation of dendritic cells.


Clinical & Experimental Allergy | 2004

Mixed antibody and T cell responses to peanut and the peanut allergens Ara h 1, Ara h 2, Ara h 3 and Ara h 6 in an oral sensitization model

F. van Wijk; S. Hartgring; Stef J. Koppelman; Raymond Pieters; L.M.J. Knippels

Background Peanut allergy is known for its severity and persistence through life. Several peanut proteins have been identified as allergenic and are indicated as Ara h 1–7. Very little is known about the mechanisms that underlie sensitization to peanut proteins.


Toxicological Sciences | 2011

Activation of the Aryl Hydrocarbon Receptor Suppresses Sensitization in a Mouse Peanut Allergy Model

V.J. Schulz; Joost J. Smit; Karina Willemsen; Daniëlle Fiechter; Ine Hassing; Rob Bleumink; Louis Boon; M. van den Berg; M.B.M. van Duursen; Raymond Pieters

Food allergy is an increasing health problem in Western countries. Previously, it has been shown that the intensity of food allergic reactions can be regulated by regulatory T (T(reg)) cells. In addition, it has been shown that activation of the aryl hydrocarbon receptor (AhR) regulates T-cell responses by induction of T(reg) cells. Therefore, we hypothesized that activation of the AhR pathway can suppress development of food allergic responses through the induction of T(reg) cells. This was investigated by using a mouse model for peanut allergy. C3H/HeOuJ mice (AhR(b)(-2)) were sensitized to peanut by administering peanut extract (PE) by gavage in the presence of cholera toxin and were treated with the prototypical AhR ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (0.6, 1.7, 5, and 15 μg/kg body weight) on days 3 and 11 orally. The functional role of CD4(+)CD25(+)Foxp3(+) T(reg) cells was investigated by depleting these cells with anti-CD25 mAb during sensitization to PE. TCDD treatment dose dependently suppressed sensitization to peanut (PE-specific IgE, IgG1, and IgG2a and PE-induced IL-5, IL-10, and IL-13, respectively). The percentage, but not the number, of CD4(+)CD25(+)Foxp3(+) T(reg) cells dose dependently increased by AhR activation in both spleen and mesenteric lymph nodes. Depletion of CD4(+)CD25(+)Foxp3(+) T(reg) cells markedly reversed the suppressive effect of TCDD on PE-specific antibody levels and PE-induced IL-5, IL-10, and IL-13 cytokine production. Present data demonstrate for the first time that activation of the AhR by TCDD suppressed the development of Th2-mediated food allergic responses. A functional shift within the CD4(+) cell population toward CD4(+)CD25(+)Foxp3(+) T(reg) cells appeared to underlie this effect. This suggests that the AhR pathway might provide potential therapeutic targets to treat food allergic diseases.


Clinical & Experimental Allergy | 2007

CD4+CD25+ T cells regulate the intensity of hypersensitivity responses to peanut, but are not decisive in the induction of oral sensitization

F. van Wijk; Ellen J. Wehrens; Stefan Nierkens; Louis Boon; Ahmad Kasran; Raymond Pieters; L.M.J. Knippels

Background Naturally occurring CD4+CD25+ regulatory T cells (Tregs) play a critical role in the maintenance of self‐tolerance and it has been suggested that these Tregs may also be involved in preventing allergic disease.


Journal of Immunology | 2005

CTLA-4 signaling regulates the intensity of hypersensitivity responses to food antigens, but is not decisive in the induction of sensitization

Femke van Wijk; Sanne Hoeks; Stefan Nierkens; Stef J. Koppelman; Peter van Kooten; Louis Boon; L.M.J. Knippels; Raymond Pieters

Although food allergy has emerged as a major health problem, the mechanisms that are decisive in the development of sensitization to dietary Ag remain largely unknown. CTLA-4 signaling negatively regulates immune activation, and may play a crucial role in preventing induction and/or progression of sensitization to food Ag. To elucidate the role of CTLA-4 signaling in responses to food allergens, a murine model of peanut allergy was used. During oral exposure to peanut protein extract (PPE) together with the mucosal adjuvant cholera toxin (CT), which induces peanut allergy, CTLA-4 ligation was prevented using a CTLA-4 mAb. Additionally, the effect of inhibition of the CTLA-4 pathway on oral exposure to PPE in the absence of CT, which leads to unresponsiveness to peanut Ag, was explored. During sensitization, anti-CTLA-4 treatment considerably enhanced IgE responses to PPE and the peanut allergens, Ara h 1, Ara h 3, and Ara h 6, resulting in elevated mast cell degranulation upon an oral challenge. Remarkably, antagonizing CTLA-4 during exposure to PPE in the absence of CT resulted in significant induction of Th2 cytokines and an elevation in total serum IgE levels, but failed to induce allergen-specific IgE responses and mast cell degranulation upon a PPE challenge. These results indicate that CTLA-4 signaling is not the crucial factor in preventing sensitization to food allergens, but plays a pivotal role in regulating the intensity of a food allergic sensitization response. Furthermore, these data indicate that a profoundly Th2-biased cytokine environment is insufficient to induce allergic responses against dietary Ag.


The Lancet | 2003

Is Candida albicans a trigger in the onset of coeliac disease

Willem F. Nieuwenhuizen; Raymond Pieters; L.M.J. Knippels; M.C.J.F. Jansen; S.J. Koppelman

Coeliac disease is a T-cell-mediated autoimmune disease of the small intestine that is induced by ingestion of gluten proteins from wheat, barley, or rye. We postulate that Candida albicans is a trigger in the onset of coeliac disease. The virulence factor of C albicans-hyphal wall protein 1 (HWP1)-contains aminoacid sequences that are identical or highly homologous to known coeliac disease-related alpha-gliadin and gamma-gliadin T-cell epitopes. HWP1 is a transglutaminase substrate, and is used by C albicans to adhere to the intestinal epithelium. Furthermore, tissue transglutaminase and endomysium components could become covalently linked to the yeast. Subsequently, C albicans might function as an adjuvant that stimulates antibody formation against HWP1 and gluten, and formation of autoreactive antibodies against tissue transglutaminase and endomysium.

Collaboration


Dive into the Raymond Pieters's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Louis Boon

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge