Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Raymond S. Ochs is active.

Publication


Featured researches published by Raymond S. Ochs.


Journal of Biological Chemistry | 2011

Metformin Activates AMP Kinase through Inhibition of AMP Deaminase

Jiangyong Ouyang; Rahulkumar A. Parakhia; Raymond S. Ochs

The mechanism for how metformin activates AMPK (AMP-activated kinase) was investigated in isolated skeletal muscle L6 cells. A widely held notion is that inhibition of the mitochondrial respiratory chain is central to the mechanism. We also considered other proposals for metformin action. As metabolic pathway markers, we focused on glucose transport and fatty acid oxidation. We also confirmed metformin actions on other metabolic processes in L6 cells. Metformin stimulated both glucose transport and fatty acid oxidation. The mitochondrial Complex I inhibitor rotenone also stimulated glucose transport but it inhibited fatty acid oxidation, independently of metformin. The peroxynitrite generator 3-morpholinosydnonimine stimulated glucose transport, but inhibited fatty acid oxidation. Addition of the nitric oxide precursor arginine to cells did not affect glucose transport. These studies differentiate metformin from inhibition of mitochondrial respiration and from active nitrogen species. Knockdown of adenylate kinase also failed to affect metformin stimulation of glucose transport. Hence, any means of increase in ADP appears not to be involved in the metformin mechanism. Knockdown of LKB1, an upstream kinase and AMPK activator, did not affect metformin action. Having ruled out existing proposals, we suggest a new one: metformin might increase AMP through inhibition of AMP deaminase (AMPD). We found that metformin inhibited purified AMP deaminase activity. Furthermore, a known inhibitor of AMPD stimulated glucose uptake and fatty acid oxidation. Both metformin and the AMPD inhibitor suppressed ammonia accumulation by the cells. Knockdown of AMPD obviated metformin stimulation of glucose transport. We conclude that AMPD inhibition is the mechanism of metformin action.


Journal of Biological Chemistry | 2013

Metformin Increases Mitochondrial Energy Formation in L6 Muscle Cell Cultures

Veeravenkata S. Vytla; Raymond S. Ochs

Background: Metformin is widely believed to inhibit mitochondrial respiration. Results: Metformin increased phosphocreatine recovery from dinitrophenol or azide in intact cells, increased MTT reduction, left ATP levels unchanged, and increased free AMP. Conclusion: Metformin stimulated mitochondrial energy production. Significance: Distinct mechanisms for metformin other than mitochondrial inhibition, such as the inhibition of breakdown of AMP proposed in our work, need to be pursued. A popular hypothesis for the action of metformin, the widely used anti-diabetes drug, is the inhibition of mitochondrial respiration, specifically at complex I. This is consistent with metformin stimulation of glucose uptake by muscle and inhibition of gluconeogenesis by liver. Yet, mitochondrial inhibition is inconsistent with metformin stimulation of fatty acid oxidation in both tissues. In this study, we measured mitochondrial energy production in intact cells adapting an in vivo technique of phosphocreatine (PCr) formation following energy interruption (“PCr recovery”) to cell cultures. Metformin increased PCr recovery from either dinitrophenol (DNP) or azide in L6 cells. We found that metformin alone had no effect on cell viability as measured by total ATP concentration, trypan blue exclusion, or 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction. However, treatments with low concentrations of DNP or azide reversibly decreased ATP concentration. Metformin increased 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction during recovery from either agent. Viability measured by trypan blue exclusion indicated that cells were intact under these conditions. We also found that metformin increased free AMP and, to a smaller extent, free ADP concentrations in cells, an action that was duplicated by a structurally unrelated AMP deaminase inhibitor. We conclude that, in intact cells, metformin can lead to a stimulation of energy formation, rather than an inhibition.


Journal of Biological Chemistry | 2003

A Direct Mass-action Mechanism Explains Capacitative Calcium Entry in Jurkat and Skeletal L6 Muscle Cells

Bisni Narayanan; Mohammad Naimul Islam; Diana C. Bartelt; Raymond S. Ochs

We examined capacitative calcium entry (CCE) in Jurkat and in L6 skeletal muscle cells. We found that extracellular Ca2+ can enter the endoplasmic reticulum (ER) of both cell types even in the presence of thapsigargin, which blocks entry into the ER from the cytosol through the CaATPase. Moreover, extracellular Ca2+ entry into the ER was evident even when intracellular flow of Ca2+ was in the direction of ER to cytosol due to the presence of caffeine. ER Ca2+ content was assessed by two separate means. First, we used the Mag-Fura fluorescent dye, which is sensitive only to the relatively high concentrations of Ca2+ found in the ER. Second, we transiently expressed an ER-targeted derivative of aequorin, which reports Ca2+ by luminescence. In both cases, the Ca2+ concentration in the ER increased in response to extracellular Ca2+ after the ER had been previously depleted despite blockade by thapsigargin. We found two differences between the Jurkat and L6 cells. L6, but not Jurkat cells, inhibited Ca2+ uptake at very high Ca2+ concentrations. Second, ryanodine receptor blockers inhibited the appearance of cytosolic Ca2+ during CCE if added before Ca2+ in both cases, but the L6 cells were much more sensitive to ryanodine. Both of these can be explained by the known difference in ryanodine receptors between these cell types. These findings imply that the origin of cytosolic Ca2+ during CCE is the ER. Furthermore, kinetic data demonstrated that Ca2+ filled the ER before the cytosol during CCE. Our results suggest a plasma membrane Ca2+ channel and an ER Ca2+ channel joined in tandem, allowing Ca2+ to flow directly from the extracellular space to the ER. This explains CCE; any decrease in ER [Ca2+] relative to extracellular [Ca2+] would provide the gradient for refilling the ER through a mass-action mechanism.


Experimental Biology and Medicine | 2002

A mechanism for both capacitative Ca2+ entry and excitation-contraction coupled Ca2+ release by the sarcoplasmic reticulum of skeletal muscle cells

Mohammad Naimul Islam; Bisni Narayanan; Raymond S. Ochs

We have previously established that L6 skeletal muscle cell cultures display capacitative calcium entry (CCE), a phenomenon established with other cells in which Ca2+ uptake from outside cells increases when the endoplasmic reticulum (sarcoplasmic reticulum in muscle, or SR) store is decreased. Evidence for CCE rested on the use of thapsigargin (Tg), an inhibitor of the SR CaATPase and consequently transport of Ca2+ from cytosol to SR, and measurements of cytosolic Ca2+. When Ca2+ is added to Ca2+-free cells in the presence of Tg, the measured cytosolic Ca2+ rises. This has been universally interpreted to mean that as SR Ca2+ is depleted, exogenous Ca2+ crosses the plasma membrane, but accumulates in the cytosol due to CaATPase inhibition. Our goal in the present study was to examine CCE in more detail by measuring Ca2+ in both the SR lumen and the cytosol using established fluorescent dye techniques for both. Surprisingly, direct measurement of SR Ca2+ in the presence of Tg showed an increase in luminal Ca2+ concentration in response to added exogenous Ca2+. While we were able to reproduce the conventional demonstration of CCE—an increase of Ca2+ in the cytosol in the presence of thapsigargin—we found that this process was inhibited by the prior addition of ryanodine (Ry), which inhibits the SR Ca2+ release channel, the ryanodine receptor (RyR). This was also unexpected if Ca2+ enters the cytosol first. When Ca2+ was added prior to Ry, the later was unable to exert any inhibition. This implies a competitive interaction between Ca2+ and Ry at the RyR. In addition, we found a further paradox: we had previously found Ry to be an uncompetitive inhibitor of Ca2+ transport through the RyR during excitation-contraction coupling. We also found here that high concentrations of Ca2+ inhibited its own uptake, a known feature of the RyR. We confirmed that Ca2+ enters the cells through the dihydropyridine receptor (DHPR, also known as the L-channel) by demonstrating inhibition by diltiazem. A previous suggestion to the contrary had used Mn2+ in place of direct Ca2+ measurements; we showed that Mn2+ was not inhibited by diltiazem and was not capacitative, and thus not an appropriate probe of Ca2+ flow in muscle cells. Our findings are entirely explained by a new model whereby Ca2+ enters the SR from the extracellular space directly through a combined channel formed from the DHPR and the RyR. These are known to be in close proximity in skeletal muscle. Ca2+ subsequently appears in the cytosol by egress through a separate, unoccupied RyR, explaining Ry inhibition. We suggest that upon excitation, the DHPR, in response to the electrical field of the plasma membrane, shifts to an erstwhile-unoccupied receptor, and Ca2+ is released from the now open RyR to trigger contraction. We discuss how this model also resolves existing paradoxes in the literature, and its implications for other cell types.


Experimental Biology and Medicine | 2001

Changes in Ryanodine Receptor-Mediated Calcium Release During Skeletal Muscle Differentiation. II. Resolution of a Caffeine-Ryanodine Paradox:

Mark A. Wingertzahn; Raymond S. Ochs

Our previous study demonstrated a disparity of action between two established pharmacological modulators of the same calcium (Ca2+) release channel, the ryanodine receptor (RyR). Specifically, we observed that caffeine sensitivity was elicited at earlier stages of development than that of ryanodine. In the present study, we offer a hypothesis to resolve this paradox. We provide evidence that ryanodine acts as a pure uncompetitive inhibitor of Ca2+ transport, with respect to Ca2+ itself. This explains why little ryanodine inhibition was observed at low Ca2+ concentrations, while maximal ryanodine inhibition was observed at saturating Ca2+ concentrations. In order to exclude the possibility of nonspecific ryanodine actions as an alternative explanation, we established the phenomenon of capacitative calcium entry (CCE) for L6 cells. Since it is known that CCE is inversely correlated with [Ca2+] of the ER/SR lumen, the extent of CCE is therefore an indirect measure of Ca2+ concentration within the SR. We also demonstrated the functional pathway for Ca2+ entry. Employing pharmacological inhibitors, we found that a T-type plasma membrane channel was predominant in the myoblasts, while an L-type channel was predominant in the adult myotubes. Our data using these inhibitors made nonspecific ryanodine actions an unlikely explanation of the disparity in action between ryanodine and caffeine. Moreover, we found no evidence that inositol trisphosphate, a proposed regulator of CCE for other cells, could influence CCE in L6 cells. We conclude that the disparity between caffeine and ryanodine can be explained by Ca2+ dependence of ryanodine action. This study may also offer an explanation of other studies showing unclear actions of ryanodine binding and action.


Cell Biochemistry and Biophysics | 2006

A new hypothesis for Ca2+ flows in skeletal muscle and its implications for other cell types.

Mohammad Naimul Islam; Raymond S. Ochs

We offer a new hypothesis to explain calcium flows in skeletal muscle cells. Our model accounts for the uptake of Ca2+ from the extracellular fluid, and the release of Ca2+ from the sarcoplasmic reticulum (SR/ER) (the endoplasmic reticulum in muscle is named sarcoplasmic reticulum); this has engendered difficulty in reviews encompassing both muscle and nonmuscle cells. Here we will typically refer to the organelle as ER, except when specifically discussing muscle cells. The broad consideration of two major, still unexplained properties of skeletal muscle function, namely excitation contraction coupling and capacitative calcium entry are accounted for in a unitary hypothesis. This model allows a reinterpretation of existing data, and points to areas where new investigation may be fruitful. While primarily aimed at explaining Ca2+ flows in skeletal muscle, we consider findings of other systems to explore the implications of this hypothesis for other cell types.


Biochemistry and biophysics reports | 2016

Ca2+ effects on glucose transport and fatty acid oxidation in L6 skeletal muscle cell cultures

Darrick T. Balu; Jiangyong Ouyang; Rahulkumar A. Parakhia; Saumitra Pitake; Raymond S. Ochs

We examined the effect of Ca2+ on skeletal muscle glucose transport and fatty acid oxidation using L6 cell cultures. Ca2+ stimulation of glucose transport is controversial. We found that caffeine (a Ca2+ secretagogue) stimulation of glucose transport was only evident in a two-part incubation protocol (“post-incubation”). Caffeine was present in the first incubation, the media removed, and labeled glucose added for the second. Caffeine elicited a rise in Ca2+ in the first incubation that was dissipated by the second. This post-incubation procedure was insensitive to glucose concentrations in the first incubation. With a single, direct incubation system (all components present together) caffeine caused a slight inhibition of glucose transport. This was likely due to caffeine induced inhibition of phosphatidylinositol 3-kinase (PI3K), since nanomolar concentrations of wortmannin, a selective PI3K inhibitor, also inhibited glucose transport, and previous investigators have also found this action. We did find a Ca2+ stimulation (using either caffeine or ionomycin) of fatty acid oxidation. This was observed in the absence (but not the presence) of added glucose. We conclude that Ca2+ stimulates fatty acid oxidation at a mitochondrial site, secondary to malonyl CoA inhibition (represented by the presence of glucose in our experiments). In summary, the experiments resolve a controversy on Ca2+ stimulation of glucose transport by skeletal muscle, introduce an important experimental consideration for the measurement of glucose transport, and uncover a new site of action for Ca2+ stimulation of fatty acid oxidation.


Experimental Biology and Medicine | 2016

Membrane depolarization increases ryanodine sensitivity to Ca2+ release to the cytosol in L6 skeletal muscle cells: Implications for excitation-contraction coupling.

Saumitra Pitake; Raymond S. Ochs

The dihydropyridine receptor in the plasma membrane and the ryanodine receptor in the sarcoplasmic reticulum are known to physically interact in the process of excitation–contraction coupling. However, the mechanism for subsequent Ca2+ release through the ryanodine receptor is unknown. Our lab has previously presented evidence that the dihydropyridine receptor and ryanodine receptor combine as a channel for the entry of Ca2+ under resting conditions, known as store operated calcium entry. Here, we provide evidence that depolarization during excitation–contraction coupling causes the dihydropyridine receptor to disengage from the ryanodine receptor. The newly freed ryanodine receptor can then transport Ca2+ from the sarcoplasmic reticulum to the cytosol. Experimentally, this should more greatly expose the ryanodine receptor to exogenous ryanodine. To examine this hypothesis, we titrated L6 skeletal muscle cells with ryanodine in resting and excited (depolarized) states. When L6 muscle cells were depolarized with high potassium or exposed to the dihydropyridine receptor agonist BAYK-8644, known to induce dihydropyridine receptor movement within the membrane, ryanodine sensitivity was enhanced. However, ryanodine sensitivity was unaffected when Ca2+ was elevated without depolarization by the ryanodine receptor agonist chloromethylcresol, or by increasing Ca2+ concentration in the media. Ca2+ entry currents (from the extracellular space) during excitation were strongly inhibited by ryanodine, but Ca2+ entry currents in the resting state were not. We conclude that excitation releases the ryanodine receptor from occlusion by the dihydropyridine receptor, enabling Ca2+ release from the ryanodine receptor to the cytosol.


Journal of Biological Chemistry | 1981

Ca2* Stimulation of Rat Liver Mitochondrial Glycerophosphate Dehydrogenase*

Mary Ellen Wernette; Raymond S. Ochs; Henry A. Lardy


Journal of Biological Chemistry | 1984

Glutamine metabolism of isolated rat hepatocytes. Evidence for catecholamine activation of alpha-ketoglutarate dehydrogenase.

Raymond S. Ochs

Collaboration


Dive into the Raymond S. Ochs's collaboration.

Top Co-Authors

Avatar

Rahulkumar A. Parakhia

Research Institute for Fragrance Materials

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mali Yin

Sarah Lawrence College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Diana C. Bartelt

Penn State Milton S. Hershey Medical Center

View shared research outputs
Top Co-Authors

Avatar

Gagan Kaushal

University of Charleston

View shared research outputs
Researchain Logo
Decentralizing Knowledge