Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Raymond Schuch is active.

Publication


Featured researches published by Raymond Schuch.


Molecular Microbiology | 1999

A system for identifying post‐invasion functions of invasion genes: requirements for the Mxi–Spa type III secretion pathway of Shigella flexneri in intercellular dissemination

Raymond Schuch; Robin C. Sandlin; Anthony T. Maurelli

Invasion and intercellular spread are hallmarks of Shigella pathogenicity. Invasion of the eukaryotic cell cytosol requires a type III secretion system (Mxi–Spa) and its cognate set of secreted Ipa invasins. Once intracellular, the IcsA protein directs a form of actin‐based motility that helps to drive intracellular bacterial movement, formation of cellular protrusions and cell‐to‐cell spread. Work in our laboratory has focused on identifying additional factors required for this intercellular form of dissemination. In this study, we sought to identify novel contributions of the type III secretion pathway to post‐invasion‐specific processes, distinct from its previously characterized roles in invasion. Studies of post‐invasion Ipa and Mxi–Spa functions are complicated by an absolute requirement for these virulence proteins in invasion. To circumvent this problem, we developed a system called TIER (for test of intracellular expression requirements), whereby specific ipa, mxi or spa loci are transiently expressed before infection of tissue culture cell monolayers (thus supporting invasion), but then repressed after invasion in the intracellular environment. Such invasive type III secretion mutants (called TIER mutants) were severely restricted in their ability to spread intercellularly and form plaques in confluent tissue culture cell monolayers. Intercellular spread defects were associated with the repression of most type III pathway components examined, including structural (MxiM and Spa33), secreted effector (IpaB, IpaC and IpaD) and regulatory elements (VirF and VirB). A kinetic analysis of bacterial growth in L2 cell monolayers showed that each of the TIER mutants was defective with respect to long‐term intracellular proliferation and viability. Examination of TIER mutant‐infected monolayers by electron microscopy revealed that the type III pathway was required for a late step in intercellular spread — bacterial escape from protrusion‐derived, double‐membrane‐bound vacuoles. The TIER mutants were eventually degraded in a process involving vacuolar acidification. Based on these findings, we propose that Ipa secretion via Mxi–Spa is required in the protrusion vacuole for double‐membrane lysis.


Journal of Bacteriology | 2001

MxiM and MxiJ, Base Elements of the Mxi-Spa Type III Secretion System of Shigella, Interact with and Stabilize the MxiD Secretin in the Cell Envelope

Raymond Schuch; Anthony T. Maurelli

The type III secretion pathway is broadly distributed across many parasitic bacterial genera and serves as a mechanism for delivering effector proteins to eukaryotic cell surface and cytosolic targets. While the effectors, as well as the host responses elicited, differ among type III systems, they all utilize a conserved set of 9 to 11 proteins that together form a bacterial envelope-associated secretory organelle or needle complex. The general structure of the needle complex consists of a transenvelope base containing at least three ring-forming proteins (MxiD, MxiJ, and MxiG in Shigella) that is connected to a hollow needle-like extension that projects away from the cell surface. Several studies have shown that the initial steps in needle complex assembly require interactions among the base proteins, although specific details of this process remain unknown. Here we identify a role for another base element in Shigella, MxiM, in interactions with the major outer-membrane-associated ring-forming protein, MxiD. MxiM affects several features of MxiD, including its stability, envelope association, and assembly into homomultimeric structures. Interestingly, many of the effects were also elicited by the inner-membrane-associated base element, MxiJ. We confirmed that MxiM-MxiD and MxiJ-MxiD interactions occur in vivo in the cell envelope, and we present evidence that together these base elements can form a transmembrane structure which is likely an important intermediary in the process of needle complex assembly.


Journal of Bacteriology | 2002

MxiE Regulates Intracellular Expression of Factors Secreted by the Shigella flexneri 2a Type III Secretion System

Colleen D. Kane; Raymond Schuch; William A. Day; Anthony T. Maurelli

The mxi-spa locus on the virulence plasmid of Shigella flexneri encodes components of the type III secretion system. mxiE, a gene within this locus, encodes a protein that is homologous to the AraC/XylS family of transcriptional regulators, but currently its role in pathogenesis remains undefined. We characterized the virulence phenotype of a nonpolar mxiE mutant and found that this mutant retained the ability to invade mammalian cells in tissue culture and secrete Ipas (type III effectors required for host cell invasion), although it was less efficient than wild-type Shigella at cell-to-cell spread. Despite its invasive properties in culture, the mxiE mutant was completely avirulent in an animal model. Potential targets for MxiE activation were identified by using promoter-green fluorescent protein fusions, and gene expression was examined under various growth conditions. Six MxiE-regulated genes were discovered: ospB, ospC1, ospE2, ospF, virA, and ipaH(9.8). Notably, activation of these genes only occurred within the intracellular environment of the host and not during growth at 37 degrees C in liquid culture. Interestingly, all of the MxiE-regulated proteins previously have been shown to be secreted through the type III secretion system and are putative virulence factors. Our findings suggest that some of these Osp proteins may be involved in postinvasion events related to virulence. Since bacterial pathogens adapt to multiple environments during the course of infecting a host, we propose that Shigella evolved a mechanism to take advantage of a unique intracellular cue, which is mediated through MxiE, to express proteins when the organism reaches the eukaryotic cytosol.


The Journal of Infectious Diseases | 2014

Combination Therapy With Lysin CF-301 and Antibiotic Is Superior to Antibiotic Alone for Treating Methicillin-Resistant Staphylococcus aureus–Induced Murine Bacteremia

Raymond Schuch; Han M. Lee; Brent Schneider; Karen Sauve; Christina Law; Babar K. Khan; Jimmy A. Rotolo; Yuki Horiuchi; Daniel E. Couto; Assaf Raz; Vincent A. Fischetti; David B. Huang; Robert C. Nowinski; Michael Wittekind

Lysins are bacteriophage-derived enzymes that degrade bacterial peptidoglycans. Lysin CF-301 is being developed to treat Staphylococcus aureus because of its potent, specific, and rapid bacteriolytic effects. It also demonstrates activity on drug-resistant strains, has a low resistance profile, eradicates biofilms, and acts synergistically with antibiotics. CF-301 was bacteriolytic against 250 S. aureus strains tested including 120 methicillin-resistant S. aureus (MRSA) isolates. In time-kill studies with 62 strains, CF-301 reduced S. aureus by 3-log10 within 30 minutes compared to 6–12 hours required by antibiotics. In bacteremia, CF-301 increased survival by reducing blood MRSA 100-fold within 1 hour. Combinations of CF-301 with vancomycin or daptomycin synergized in vitro and increased survival significantly in staphylococcal-induced bacteremia compared to treatment with antibiotics alone (P < .0001). Superiority of CF-301 combinations with antibiotics was confirmed in 26 independent bacteremia studies. Combinations including CF-301 and antibiotics represent an attractive alternative to antibiotic monotherapies currently used to treat S. aureus bacteremia.


Journal of Bacteriology | 2006

Detailed Genomic Analysis of the Wβ and γ Phages Infecting Bacillus anthracis: Implications for Evolution of Environmental Fitness and Antibiotic Resistance

Raymond Schuch; Vincent A. Fischetti

Phage-mediated lysis has been an essential laboratory tool for rapidly identifying Bacillus anthracis for more than 40 years, relying on the γ phage derivative of a Bacillus cereus prophage called W. The complete genomic sequences of the temperate W phage, referred to as Wβ, and its lytic variant γ were determined and found to encode 53 open reading frames each, spanning 40,864 bp and 37,373 bp, respectively. Direct comparison of the genomes showed that γ evolved through mutations at key loci controlling host recognition, lysogenic growth, and possibly host phenotypic modification. Included are a cluster of point mutations at the gp14 tail fiber locus of γ, encoding a protein that, when fused to green fluorescent protein, binds specifically to B. anthracis. A large 2,003-bp deletion was also identified at the γ lysogeny module, explaining its shift from a temperate to a lytic lifestyle. Finally, evidence of recombination was observed at a dicistronic Wβ locus, encoding putative bacterial cell surface-modifying proteins, replaced in γ with a locus, likely obtained from a B. anthracis prophage, encoding demonstrable fosfomycin resistance. Reverse transcriptase PCR analysis confirmed strong induction at the dicistronic Wβ locus and at four other phage loci in B. anthracis and/or B. cereus lysogens. In all, this study represents the first genomic and functional description of two historically important phages and is part of a broader investigation into contributions of phage to the B. anthracis life cycle. Initial findings suggest that lysogeny of B. anthracis promotes ecological adaptation, rather than virulence, as with other gram-positive pathogens.


The Journal of Infectious Diseases | 2001

Cadaverine Prevents the Escape of Shigella flexneri from the Phagolysosome: A Connection between Bacterial Dissemination and Neutrophil Transepithelial Signaling

Milton Silva; Raymond Schuch; W. Allan Walker; Andrew M. Siber; Anthony T. Maurelli; Beth A. McCormick

Shigella flexneri causes bacillary dysentery in humans by invading epithelial cells of the colon, which is characterized by an acute polymorphonuclear leukocyte (PMNL)-rich inflammation. Our recent studies demonstrated that cadaverine, a polyamine, specifically acts to abrogate transepithelial signaling to PMNL induced by S. flexneri. Here, insight is provided into the cellular mechanisms by which cadaverine attenuates the ability of Shigella species to induce PMNL signaling. It was found that cadaverine retards the lysis of the Shigella species-containing vacuole, suggesting that a blockade is established, in which the pathogen is prevented from adequately interacting with the cytoskeleton. Furthermore, an IcsA mutant of S. flexneri that cannot interact with the cytoskeleton and spreads intercellularly fails to induce transmigration of PMNL. Results indicate that cadaverine-induced compartmentalization of Shigella species to the phagolysosome might be a protective response of the host that directly contributes to the diminished ability of PMNL to transmigrate across model intestinal epithelia.


Journal of Bacteriology | 2010

A Novel Spore Protein, ExsM, Regulates Formation of the Exosporium in Bacillus cereus and Bacillus anthracis and Affects Spore Size and Shape

Monica M. Fazzini; Raymond Schuch; Vincent A. Fischetti

Bacillus cereus spores are assembled with a series of concentric layers that protect them from a wide range of environmental stresses. The outermost layer, or exosporium, is a bag-like structure that interacts with the environment and is composed of more than 20 proteins and glycoproteins. Here, we identified a new spore protein, ExsM, from a beta-mercaptoethanol extract of B. cereus ATCC 4342 spores. Subcellular localization of an ExsM-green fluorescent protein (GFP) protein revealed a dynamic pattern of fluorescence that follows the site of formation of the exosporium around the forespore. Under scanning electron microscopy, exsM null mutant spores were smaller and rounder than wild-type spores, which had an extended exosporium (spore length for the wt, 2.40 +/- 0.56 microm, versus that for the exsM mutant, 1.66 +/- 0.38 microm [P < 0.001]). Thin-section electron microscopy revealed that exsM mutant spores were encased by a double-layer exosporium, both layers of which were composed of a basal layer and a hair-like nap. Mutant exsM spores were more resistant to lysozyme treatment and germinated with higher efficiency than wild-type spores, and they had a delay in outgrowth. Insertional mutagenesis of exsM in Bacillus anthracis DeltaSterne resulted in a partial second exosporium and in smaller spores. In all, these findings suggest that ExsM plays a critical role in the formation of the exosporium.


Microbiology | 1999

Nucleosides as a carbon source in Bacillus subtilis : characterization of the drm-pupG operon

Raymond Schuch; Araik Garibian; Hans Henrik Saxild; Patrick J. Piggot; Per Nygaard

In Bacillus subtilis, nucleosides are readily taken up from the growth medium and metabolized. The key enzymes in nucleoside catabolism are nucleoside phosphorylases, phosphopentomutase, and deoxyriboaldolase. The characterization of two closely linked loci, drm and pupG, which encode phosphopentomutase (Drm) and guanosine (inosine) phosphorylase (PupG), respectively, is reported here. When expressed in Escherichia coli mutant backgrounds, drm and pupG confer phosphopentomutase and purine-nucleoside phosphorylase activity. Northern blot and enzyme analyses showed that drm and pupG form a dicistronic operon. Both enzymes are induced when nucleosides are present in the growth medium. Using mutants deficient in nucleoside catabolism, it was demonstrated that the low-molecular-mass effectors of this induction most likely were deoxyribose 5-phosphate and ribose 5-phosphate. Both Drm and PupG activity levels were higher when succinate rather than glucose served as the carbon source, indicating that the expression of the operon is subject to catabolite repression. Primer extension analysis identified two transcription initiation signals upstream of drm; both were utilized in induced and non-induced cells. The nucleoside-catabolizing system in B. subtilis serves to utilize the base for nucleotide synthesis while the pentose moiety serves as the carbon source. When added alone, inosine barely supports growth of B. subtilis. This slow nucleoside catabolism contrasts with that of E. coli, which grows rapidly on a nucleoside as a carbon source. When inosine was added with succinate or deoxyribose, however, a significant increase in growth was observed in B. subtilis. The findings of this study therefore indicate that the B. subtilis system for nucleoside catabolism differs greatly from the well-studied system in E. coli.


Journal of Bacteriology | 2007

Genetic Structure of the nadA and nadB Antivirulence Loci in Shigella spp.

Anne-Laure Prunier; Raymond Schuch; Reinaldo E. Fernández; Anthony T. Maurelli

Comparison of nadA and nadB in 14 Shigella strains and enteroinvasive Escherichia coli versus E. coli showed that at least one locus is altered in all strains. These observations explain the characteristic nicotinic acid auxotrophy of Shigella organisms and are consistent with the previously identified antivirulence nature of these genes for these pathogens.


Infection and Immunity | 2001

Spa33, a Cell Surface-Associated Subunit of the Mxi-Spa Type III Secretory Pathway of Shigella flexneri, Regulates Ipa Protein Traffic

Raymond Schuch; Anthony T. Maurelli

ABSTRACT The Mxi-Spa type III secretion system of Shigella flexneri directs the host cell contact-induced secretion of a set of invasins, referred to as Ipas. In this study, we examined the role of Spa33 in Ipa secretion. A spa33-null mutant was both noninvasive and unable to translocate the Ipas from inner membrane to outer membrane (OM) positions of the Mxi-Spa transmembrane channel. Spa33 was found to be a Mxi-Spa substrate that is translocated to the bacterial cell surface upon the induction of Ipa secretion. This mobility may serve to drive Ipa translocation within Mxi-Spa toward OM positions. Consistent with a second distinct role in regulating Ipa traffic, the overexpression of Spa33 also blocked Ipa secretion and resulted in Ipa accumulation at the OM. Co-overexpression of Spa33 and another OM-associated element, Spa32, did not disrupt Ipa secretion, suggesting an interaction between the two proteins and an effect on the mechanism which serves to regulate Ipa release from the OM. These findings indicate that Spa33 is a mobile element within Mxi-Spa, which is required to control Ipa translocation into and out of OM positions of the secretory structure.

Collaboration


Dive into the Raymond Schuch's collaboration.

Top Co-Authors

Avatar

Anthony T. Maurelli

Henry M. Jackson Foundation for the Advancement of Military Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne-Laure Prunier

Uniformed Services University of the Health Sciences

View shared research outputs
Top Co-Authors

Avatar

Assaf Raz

Rockefeller University

View shared research outputs
Top Co-Authors

Avatar

Beth A. McCormick

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hoonmo L. Koo

Baylor College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge