Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Raymond W. Simmonds is active.

Publication


Featured researches published by Raymond W. Simmonds.


Nature | 2007

Coherent quantum state storage and transfer between two phase qubits via a resonant cavity.

Mika Sillanpää; Jae I. Park; Raymond W. Simmonds

As with classical information processing, a quantum information processor requires bits (qubits) that can be independently addressed and read out, long-term memory elements to store arbitrary quantum states, and the ability to transfer quantum information through a coherent communication bus accessible to a large number of qubits. Superconducting qubits made with scalable microfabrication techniques are a promising candidate for the realization of a large-scale quantum information processor. Although these systems have successfully passed tests of coherent coupling for up to four qubits, communication of individual quantum states between superconducting qubits via a quantum bus has not yet been realized. Here, we perform an experiment demonstrating the ability to coherently transfer quantum states between two superconducting Josephson phase qubits through a quantum bus. This quantum bus is a resonant cavity formed by an open-ended superconducting transmission line of length 7 mm. After preparing an initial quantum state with the first qubit, this quantum information is transferred and stored as a nonclassical photon state of the resonant cavity, then retrieved later by the second qubit connected to the opposite end of the cavity. Beyond simple state transfer, these results suggest that a high-quality-factor superconducting cavity could also function as a useful short-term memory element. The basic architecture presented here can be expanded, offering the possibility for the coherent interaction of a large number of superconducting qubits.


Nature | 2011

Sideband cooling of micromechanical motion to the quantum ground state

J. D. Teufel; Tobias Donner; Dale Li; Jennifer Harlow; Michael S. Allman; Katarina Cicak; Adam Sirois; J. D. Whittaker; K. W. Lehnert; Raymond W. Simmonds

The advent of laser cooling techniques revolutionized the study of many atomic-scale systems, fuelling progress towards quantum computing with trapped ions and generating new states of matter with Bose–Einstein condensates. Analogous cooling techniques can provide a general and flexible method of preparing macroscopic objects in their motional ground state. Cavity optomechanical or electromechanical systems achieve sideband cooling through the strong interaction between light and motion. However, entering the quantum regime—in which a system has less than a single quantum of motion—has been difficult because sideband cooling has not sufficiently overwhelmed the coupling of low-frequency mechanical systems to their hot environments. Here we demonstrate sideband cooling of an approximately 10-MHz micromechanical oscillator to the quantum ground state. This achievement required a large electromechanical interaction, which was obtained by embedding a micromechanical membrane into a superconducting microwave resonant circuit. To verify the cooling of the membrane motion to a phonon occupation of 0.34 ± 0.05 phonons, we perform a near-Heisenberg-limited position measurement within (5.1 ± 0.4)h/2π, where h is Planck’s constant. Furthermore, our device exhibits strong coupling, allowing coherent exchange of microwave photons and mechanical phonons. Simultaneously achieving strong coupling, ground state preparation and efficient measurement sets the stage for rapid advances in the control and detection of non-classical states of motion, possibly even testing quantum theory itself in the unexplored region of larger size and mass. Because mechanical oscillators can couple to light of any frequency, they could also serve as a unique intermediary for transferring quantum information between microwave and optical domains.


Nature | 2011

Circuit cavity electromechanics in the strong-coupling regime

J. D. Teufel; D. Li; Michael S. Allman; Katarina Cicak; Adam Sirois; Jed D. Whittaker; Raymond W. Simmonds

Demonstrating and exploiting the quantum nature of macroscopic mechanical objects would help us to investigate directly the limitations of quantum-based measurements and quantum information protocols, as well as to test long-standing questions about macroscopic quantum coherence. Central to this effort is the necessity of long-lived mechanical states. Previous efforts have witnessed quantum behaviour, but for a low-quality-factor mechanical system. The field of cavity optomechanics and electromechanics, in which a high-quality-factor mechanical oscillator is parametrically coupled to an electromagnetic cavity resonance, provides a practical architecture for cooling, manipulation and detection of motion at the quantum level. One requirement is strong coupling, in which the interaction between the two systems is faster than the dissipation of energy from either system. Here, by incorporating a free-standing, flexible aluminium membrane into a lumped-element superconducting resonant cavity, we have increased the single-photon coupling strength between these two systems by more than two orders of magnitude, compared to previously obtained coupling strengths. A parametric drive tone at the difference frequency between the mechanical oscillator and the cavity resonance dramatically increases the overall coupling strength, allowing us to completely enter the quantum-enabled, strong-coupling regime. This is evidenced by a maximum normal-mode splitting of nearly six bare cavity linewidths. Spectroscopic measurements of these ‘dressed states’ are in excellent quantitative agreement with recent theoretical predictions. The basic circuit architecture presented here provides a feasible path to ground-state cooling and subsequent coherent control and measurement of long-lived quantum states of mechanical motion.


Nanotechnology | 2006

Practical implementation of dynamic methods for measuring atomic force microscope cantilever spring constants

S M Cook; Tilman E. Schäffer; K M Chynoweth; M Wigton; Raymond W. Simmonds; Kristine Lang

Measurement of atomic force microscope cantilever spring constants (k) is essential for many of the applications of this versatile instrument. Numerous techniques to measure k have been proposed. Among these, we found the thermal noise and Sader methods to be commonly applicable and relatively user-friendly, providing an in situ, non-destructive, fast measurement of k for a cantilever independent of its material or coating. Such advantages recommend these methods for widespread use. An impediment thereto is the significant complication involved in the initial implementation of the methods. Some details of the implementation are discussed in publications, while others are left unsaid. Here we present a complete, cohesive, and practically oriented discussion of the implementation of both the thermal noise and Sader methods of measuring cantilever spring constants. We review the relevant theory and discuss practical experimental means for determining the required quantities. We then present results that compare measurements of k by these two methods over nearly two orders of magnitude, and we discuss the likely origins of both statistical and systematic errors for both methods. In conclusion, we find that the two methods agree to within an average of 4% over the wide range of cantilevers measured. Given that the methods derive from distinct physics we find the agreement a compelling argument in favour of the accuracy of both, suggesting them as practical standards for the field.


Nature | 2013

Coherent state transfer between itinerant microwave fields and a mechanical oscillator

Tauno Palomaki; Jennifer Harlow; J. D. Teufel; Raymond W. Simmonds; K. W. Lehnert

Recently, macroscopic mechanical oscillators have been coaxed into a regime of quantum behavior, by direct refrigeration [1] or a combination of refrigeration and laser-like cooling [2, 3]. This exciting result has encouraged notions that mechanical oscillators may perform useful functions in the processing of quantum information with superconducting circuits [1, 4–7], either by serving as a quantum memory for the ephemeral state of a microwave field or by providing a quantum interface between otherwise incompatible systems [8, 9]. As yet, the transfer of an itinerant state or propagating mode of a microwave field to and from a mechanical oscillator has not been demonstrated owing to the inability to agilely turn on and off the interaction between microwave electricity and mechanical motion. Here we demonstrate that the state of an itinerant microwave field can be coherently transferred into, stored in, and retrieved from a mechanical oscillator with amplitudes at the single quanta level. Crucially, the time to capture and to retrieve the microwave state is shorter than the quantum state lifetime of the mechanical oscillator. In this quantum regime, the mechanical oscillator can both store and transduce quantum information.Macroscopic mechanical oscillators have been coaxed into a regime of quantum behaviour by direct refrigeration or a combination of refrigeration and laser-like cooling. This result supports the idea that mechanical oscillators may perform useful functions in the processing of quantum information with superconducting circuits, either by serving as a quantum memory for the ephemeral state of a microwave field or by providing a quantum interface between otherwise incompatible systems. As yet, the transfer of an itinerant state or a propagating mode of a microwave field to and from a storage medium has not been demonstrated, owing to the inability to turn on and off the interaction between the microwave field and the medium sufficiently quickly. Here we demonstrate that the state of an itinerant microwave field can be coherently transferred into, stored in and retrieved from a mechanical oscillator with amplitudes at the single-quantum level. Crucially, the time to capture and to retrieve the microwave state is shorter than the quantum state lifetime of the mechanical oscillator. In this quantum regime, the mechanical oscillator can both store quantum information and enable its transfer between otherwise incompatible systems.


Physical Review Letters | 2004

Observation of quantum oscillations between a Josephson phase qubit and a microscopic resonator using fast readout.

K. Cooper; Matthias Steffen; Robert McDermott; Raymond W. Simmonds; Seongshik Oh; Dustin A. Hite; David P. Pappas; John M. Martinis

We have detected coherent quantum oscillations between Josephson phase qubits and critical-current fluctuators by implementing a new state readout technique that is an order of magnitude faster than previous methods. These results reveal a new aspect of the quantum behavior of Josephson junctions, and they demonstrate the means to measure two-qubit interactions in the time domain. The junction-fluctuator interaction also points to a possible mechanism for decoherence and reduced fidelity in superconducting qubits.


Review of Scientific Instruments | 2004

Conducting atomic force microscopy for nanoscale tunnel barrier characterization

Kristine Lang; Dustin A. Hite; Raymond W. Simmonds; Robert McDermott; David P. Pappas; John M. Martinis

Increasing demands on nanometer-scale properties of oxide tunnel barriers necessitate a consistent means to assess them on these length scales. Conducting atomic force microscopy (CAFM) is a promising technique both for understanding connections between nanoscale tunnel barrier characteristics and macroscopic device performance as well as for rapid qualitative evaluation of new fabrication methods and materials. Here we report CAFM characterization of aluminum oxide (AlOx) barriers to be used in Josephson-junction qubits, with a particular emphasis on developing reproducible imaging conditions and appropriate interpretation. We find that control of the imaging force is a critical factor for reproducibility. We imaged the same sample on the same day with the same cantilever varying only the imaging force between scans. Statistical properties compiled from the resulting current maps varied approximately exponentially with imaging force, with typical currents increasing by two orders of magnitude for only a ...


Physical Review Letters | 2010

Arbitrary Control of Entanglement between Two Superconducting Resonators

Frederick W. Strauch; Kurt Jacobs; Raymond W. Simmonds

We present a method to synthesize an arbitrary quantum state of two superconducting resonators. This state-synthesis algorithm utilizes a coherent interaction of each resonator with a tunable artificial atom to create entangled quantum superpositions of photon number (Fock) states in the resonators. We theoretically analyze this approach, showing that it can efficiently synthesize NOON states, with large photon numbers, using existing technology.


Biomicrofluidics | 2011

Manipulating particle trajectories with phase-control in surface acoustic wave microfluidics

Nathan D. Orloff; Jaclyn R. Dennis; Marco Cecchini; Ethan Schonbrun; Eduard Rocas; Yu Wang; David R. Novotny; Raymond W. Simmonds; John M. Moreland; Ichiro Takeuchi; James C. Booth

We present a 91 MHz surface acoustic wave resonator with integrated microfluidics that includes a flow focus, an expansion region, and a binning region in order to manipulate particle trajectories. We demonstrate the ability to change the position of the acoustic nodes by varying the electronic phase of one of the transducers relative to the other in a pseudo-static manner. The measurements were performed at room temperature with 3 μm diameter latex beads dispersed in a water-based solution. We demonstrate the dependence of nodal position on pseudo-static phase and show simultaneous control of 9 bead streams with spatial control of -0.058 μm/deg ± 0.001 μm/deg. As a consequence of changing the position of bead streams perpendicular to their flow direction, we also show that the integrated acoustic-microfluidic device can be used to change the trajectory of a bead stream towards a selected bin with an angular control of 0.008 deg/deg ± 0.000(2) deg/deg.


Physical Review X | 2015

Quantum Nondemolition Measurement of a Nonclassical State of a Massive Object.

Florent Lecocq; Jeremy B. Clark; Raymond W. Simmonds; Jose Aumentado; John Teufel

By coupling a macroscopic mechanical oscillator to two microwave cavities, we simultaneously prepare and monitor a nonclassical steady state of mechanical motion. In each cavity, correlated radiation pressure forces induced by two coherent drives engineer the coupling between the quadratures of light and motion. We, first, demonstrate the ability to perform a continuous quantum nondemolition measurement of a single mechanical quadrature at a rate that exceeds the mechanical decoherence rate, while avoiding measurement backaction by more than 13 dB. Second, we apply this measurement technique to independently verify the preparation of a squeezed state in the mechanical oscillator, resolving quadrature fluctuations 20% below the quantum noise.

Collaboration


Dive into the Raymond W. Simmonds's collaboration.

Top Co-Authors

Avatar

Katarina Cicak

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Adam Sirois

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Kevin Osborn

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Jose Aumentado

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

David P. Pappas

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

John M. Martinis

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joshua Strong

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Jed D. Whittaker

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge