Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Raymond Wong is active.

Publication


Featured researches published by Raymond Wong.


Current Biology | 2005

PIP2 Hydrolysis and Calcium Release Are Required for Cytokinesis in Drosophila Spermatocytes

Raymond Wong; Irene Hadjiyanni; Ho-Chun Wei; Gordon Polevoy; Rachel McBride; Kai-Ping Sem; Julie A. Brill

The role of calcium (Ca(2+)) in cytokinesis is controversial, and the precise pathways that lead to its release during cleavage are not well understood. Ca(2+) is released from intracellular stores by binding of inositol trisphosphate (IP3) to the IP3 receptor (IP3R), yet no clear role in cytokinesis has been established for the precursor of IP3, phosphatidylinositol 4,5-bisphosphate (PIP2). Here, using transgenic flies expressing PLCdelta-PH-GFP, which specifically binds PIP2, we identify PIP2 in the plasma membrane and cleavage furrows of dividing Drosophila melanogaster spermatocytes, and we establish that this phospholipid is required for continued ingression but not for initiation of cytokinesis. In addition, by inhibiting phospholipase C, we show that PIP2 must be hydrolyzed to maintain cleavage furrow stability. Using an IP3R antagonist and a Ca(2+) chelator to examine the roles of IP3R and Ca(2+) in cytokinesis, we demonstrate that both of these factors are required for cleavage furrow stability, although Ca(2+) is dispensable for cleavage plane specification and initiation of furrowing. Strikingly, providing cells with Ca(2+) obviates the need to hydrolyze PIP2. Thus, PIP2, PIP2 hydrolysis, and Ca(2+) are required for the normal progression of cytokinesis in these cells.


Journal of Cell Biology | 2009

Dual roles for the Drosophila PI 4-kinase four wheel drive in localizing Rab11 during cytokinesis.

Gordon Polevoy; Ho-Chun Wei; Raymond Wong; Zsofia Szentpetery; Yeun Ju Kim; Philip Goldbach; Sarah K. Steinbach; Tamas Balla; Julie A. Brill

Fwd shuttles Rab11 to the cleavage furrow by both kinase-dependent and -independent mechanisms.


Molecular Biology of the Cell | 2010

Stabilization of the Actomyosin Ring Enables Spermatocyte Cytokinesis in Drosophila

Philip Goldbach; Raymond Wong; Nolan Beise; Ritu Sarpal; William S. Trimble; Julie A. Brill

The scaffolding protein anillin recruits septins to the cleavage furrow and constrains actomyosin contractility. Expression of E-cadherin suppresses the cytokinesis defects caused by anillin knockdown and stabilizes F-actin in the furrow, thereby providing an alternate means of coupling the actomyosin ring to the plasma membrane during cytokinesis.


BMC Cell Biology | 2007

Phospholipase C and myosin light chain kinase inhibition define a common step in actin regulation during cytokinesis

Raymond Wong; Lacramioara Fabian; Arthur Forer; Julie A. Brill

BackgroundPhosphatidylinositol 4,5-bisphosphate (PIP2) is required for successful completion of cytokinesis. In addition, both PIP2 and phosphoinositide-specific phospholipase C (PLC) have been localized to the cleavage furrow of dividing mammalian cells. PLC hydrolyzes PIP2 to yield diacylglycerol (DAG) and inositol trisphosphate (IP3), which in turn induces calcium (Ca2+) release from the ER. Several studies suggest PIP2 must be hydrolyzed continuously for continued cleavage furrow ingression. The majority of these studies employ the N-substituted maleimide U73122 as an inhibitor of PLC. However, the specificity of U73122 is unclear, as its active group closely resembles the non-specific alkylating agent N-ethylmaleimide (NEM). In addition, the pathway by which PIP2 regulates cytokinesis remains to be elucidated.ResultsHere we compared the effects of U73122 and the structurally unrelated PLC inhibitor ET-18-OCH3 (edelfosine) on cytokinesis in crane-fly and Drosophila spermatocytes. Our data show that the effects of U73122 are indeed via PLC because U73122 and ET-18-OCH3 produced similar effects on cell morphology and actin cytoskeleton organization that were distinct from those caused by NEM. Furthermore, treatment with the myosin light chain kinase (MLCK) inhibitor ML-7 caused cleavage furrow regression and loss of both F-actin and phosphorylated myosin regulatory light chain from the contractile ring in a manner similar to treatment with U73122 and ET-18-OCH3.ConclusionWe have used multiple inhibitors to examine the roles of PLC and MLCK, a predicted downstream target of PLC regulation, in cytokinesis. Our results are consistent with a model in which PIP2 hydrolysis acts via Ca2+ to activate myosin via MLCK and thereby control actin dynamics during constriction of the contractile ring.


Retrovirology | 2011

Differential effect of CLK SR Kinases on HIV-1 gene expression: potential novel targets for therapy

Raymond Wong; Ahalya Balachandran; Annie Yq Mao; Wendy Dobson; Scott D. Gray-Owen; Alan Cochrane

BackgroundRNA processing plays a critical role in the replication of HIV-1, regulated in part through the action of host SR proteins. To explore the impact of modulating SR protein activity on virus replication, the effect of increasing or inhibiting the activity of the Cdc2-like kinase (CLK) family of SR protein kinases on HIV-1 expression and RNA processing was examined.ResultsDespite their high homology, increasing individual CLK expression had distinct effects on HIV-1, CLK1 enhancing Gag production while CLK2 inhibited the virus. Parallel studies on the anti-HIV-1 activity of CLK inhibitors revealed a similar discrepant effect on HIV-1 expression. TG003, an inhibitor of CLK1, 2 and 4, had no effect on viral Gag synthesis while chlorhexidine, a CLK2, 3 and 4 inhibitor, blocked virus production. Chlorhexidine treatment altered viral RNA processing, decreasing levels of unspliced and single spliced viral RNAs, and reduced Rev accumulation. Subsequent experiments in the context of HIV-1 replication in PBMCs confirmed the capacity of chlorhexidine to suppress virus replication.ConclusionsTogether, these findings establish that HIV-1 RNA processing can be targeted to suppress virus replication as demonstrated by manipulating individual CLK function and identified chlorhexidine as a lead compound in the development of novel anti-viral therapies.


PLOS Pathogens | 2013

Digoxin Suppresses HIV-1 Replication by Altering Viral RNA Processing

Raymond Wong; Ahalya Balachandran; Mario A. Ostrowski; Alan Cochrane

To develop new approaches to control HIV-1 replication, we examined the capacity of recently described small molecular modulators of RNA splicing for their effects on viral RNA metabolism. Of the drugs tested, digoxin was found to induce a dramatic inhibition of HIV-1 structural protein synthesis, a response due, in part, to reduced accumulation of the corresponding viral mRNAs. In addition, digoxin altered viral RNA splice site use, resulting in loss of the essential viral factor Rev. Digoxin induced changes in activity of the CLK family of SR protein kinases and modification of several SR proteins, including SRp20 and Tra2β, which could account for the effects observed. Consistent with this hypothesis, overexpression of SRp20 elicited changes in HIV-1 RNA processing similar to those observed with digoxin. Importantly, digoxin was also highly active against clinical strains of HIV-1 in vitro, validating this novel approach to treatment of this infection.


Current Biology | 2011

Phosphoinositide Function in Cytokinesis

Julie A. Brill; Raymond Wong; Andrew Wilde

In systems as diverse as yeast, slime mold and animal cells, the levels and distribution of phosphatidylinositol phosphates (PIPs) must be strictly regulated for successful cell cleavage. The precise mechanism by which PIPs function in this process remains unknown. Recent experiments are beginning to shed light on the cellular pathways in which PIPs make key contributions during cytokinesis. In particular, PIPs promote proper actin cytoskeletal organization and direct membrane trafficking in dividing cells. Future research will uncover temporal and spatial regulation of the different PIPs, thus elucidating their role in cytoskeletal and membrane events that drive cell cleavage.


The Journal of Neuroscience | 2014

PKA Reduces the Rat and Human KCa3.1 Current, CaM Binding, and Ca2+ Signaling, Which Requires Ser332/334 in the CaM-Binding C Terminus

Raymond Wong; Lyanne C. Schlichter

The Ca2+-dependent K+ channel, KCa3.1 (KCNN4/IK/SK4), is widely expressed and contributes to cell functions that include volume regulation, migration, membrane potential, and excitability. KCa3.1 is now considered a therapeutic target for several diseases, including CNS disorders involving microglial activation; thus, we need to understand how KCa3.1 function is regulated. KCa3.1 gating and trafficking require calmodulin binding to the two ends of the CaM-binding domain (CaMBD), which also contains three conserved sites for Ser/Thr kinases. Although cAMP protein kinase (PKA) signaling is important in many cells that use KCa3.1, reports of channel regulation by PKA are inconsistent. We first compared regulation by PKA of native rat KCa3.1 channels in microglia (and the microglia cell line, MLS-9) with human KCa3.1 expressed in HEK293 cells. In all three cells, PKA activation with Sp-8-Br-cAMPS decreased the current, and this was prevented by the PKA inhibitor, PKI14–22. Inhibiting PKA with Rp-8-Br-cAMPS increased the current in microglia. Mutating the single PKA site (S334A) in human KCa3.1 abolished the PKA-dependent regulation. CaM-affinity chromatography showed that CaM binding to KCa3.1 was decreased by PKA-dependent phosphorylation of S334, and this regulation was absent in the S334A mutant. Single-channel analysis showed that PKA decreased the open probability in wild-type but not S334A mutant channels. The same decrease in current for native and wild-type expressed KCa3.1 channels (but not S334A) occurred when PKA was activated through the adenosine A2a receptor. Finally, by decreasing the KCa3.1 current, PKA activation reduced Ca2+-release-activated Ca2+ entry following activation of metabotropic purinergic receptors in microglia.


PLOS ONE | 2014

Expression and Contributions of TRPM7 and KCa2.3/SK3 Channels to the Increased Migration and Invasion of Microglia in Anti-Inflammatory Activation States

Tamjeed Siddiqui; Starlee Lively; Roger Ferreira; Raymond Wong; Lyanne C. Schlichter

Microglia rapidly respond to CNS injury and disease and can assume a spectrum of activation states. While changes in gene expression and production of inflammatory mediators have been extensively described after classical (LPS-induced) and alternative (IL4-induced) microglial activation, less is known about acquired de-activation in response to IL10. It is important to understand how microglial activation states affect their migration and invasion; crucial functions after injury and in the developing CNS. We reported that LPS-treated rat microglia migrate very poorly, while IL4-treated cells migrate and invade much better. Having discovered that the lamellum of migrating microglia contains a large ring of podosomes – microscopic structures that are thought to mediate adhesion, migration and invasion – we hypothesized that IL4 and IL10 would differentially affect podosome expression, gene induction, migration and invasion. Further, based on the enrichment of the KCa2.3/SK3 Ca2+-activated potassium channel in microglial podosomes, we predicted that it regulates migration and invasion. We found both similarities and differences in gene induction by IL4 and IL10 and, while both cytokines increased migration and invasion, only IL10 affected podosome expression. KCa2.3 currents were recorded in microglia under all three activation conditions and KCNN3 (KCa2.3) expression was similar. Surprisingly then, of three KCa2.3 inhibitors (apamin, tamapin, NS8593), only NS8593 abrogated the increased migration and invasion of IL4 and IL10-treated microglia (and invasion of unstimulated microglia). This discrepancy was explained by the observed block of TRPM7 currents in microglia by NS8593, which occurred under all three activation conditions. A similar inhibition of both migration and invasion was seen with a TRPM7 inhibitor (AA-861) that does not block KCa2.3 channels. Thus, we conclude that TRPM7 (not KCa2.3) contributes to the enhanced ability of microglia to migrate and invade when in anti-inflammatory states. This will be an important consideration in developing TRPM7 inhibitors for treating CNS injury.


Virology | 2009

Stable complex formation between HIV Rev and the nucleosome assembly protein, NAP1, affects Rev function

Alan Cochrane; Laura Lea Murley; Mian Gao; Raymond Wong; Kiera L. Clayton; Nicole Brufatto; Veronica Canadien; Daniel Mamelak; Tricia Chen; Dawn Richards; Mahel Zeghouf; Jack Greenblatt; Christian Burks; Lori Frappier

The Rev protein of HIV-1 is essential for HIV-1 proliferation due to its role in exporting viral RNA from the nucleus. We used a modified version of tandem affinity purification (TAP) tagging to identify proteins interacting with HIV-1 Rev in human cells and discovered a prominent interaction between Rev and nucleosome assembly protein 1 (Nap1). This interaction was also observed by specific retention of Nap1 from human cell lysates on a Rev affinity column. Nap1 was found to bind Rev through the Rev arginine-rich domain and altered the oligomerization state of Rev in vitro. Overexpression of Nap1 stimulated the ability of Rev to export RNA, reduced the nucleolar localization of Rev, and affected Rev nuclear import rates. The results suggest that Nap-1 may influence Rev function by increasing the availability of Rev.

Collaboration


Dive into the Raymond Wong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Feiya Li

University of Toronto

View shared research outputs
Top Co-Authors

Avatar

Ho-Chun Wei

Simon Fraser University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge