Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Raz Somech is active.

Publication


Featured researches published by Raz Somech.


Immunity | 2014

Interleukin-10 receptor signaling in innate immune cells regulates mucosal immune tolerance and anti-inflammatory macrophage function

Dror S. Shouval; Amlan Biswas; Jeremy A. Goettel; Katelyn McCann; Evan Conaway; Naresh Singh Redhu; Ivan D. Mascanfroni; Ziad Al Adham; Sydney Lavoie; Mouna Ibourk; Deanna D. Nguyen; Janneke N. Samsom; Johanna C. Escher; Raz Somech; Batia Weiss; Rita Beier; Laurie S. Conklin; Christen L. Ebens; Fernanda Stephanie Santos; Alexandre Rodrigues Ferreira; Mary Sherlock; Atul K. Bhan; Werner Müller; J. Rodrigo Mora; Francisco J. Quintana; Christoph Klein; Aleixo M. Muise; Bruce H. Horwitz; Scott B. Snapper

Intact interleukin-10 receptor (IL-10R) signaling on effector and T regulatory (Treg) cells are each independently required to maintain immune tolerance. Here we show that IL-10 sensing by innate immune cells, independent of its effects on T cells, was critical for regulating mucosal homeostasis. Following wild-type (WT) CD4(+) T cell transfer, Rag2(-/-)Il10rb(-/-) mice developed severe colitis in association with profound defects in generation and function of Treg cells. Moreover, loss of IL-10R signaling impaired the generation and function of anti-inflammatory intestinal and bone-marrow-derived macrophages and their ability to secrete IL-10. Importantly, transfer of WT but not Il10rb(-/-) anti-inflammatory macrophages ameliorated colitis induction by WT CD4(+) T cells in Rag2(-/-)Il10rb(-/-) mice. Similar alterations in the generation and function of anti-inflammatory macrophages were observed in IL-10R-deficient patients with very early onset inflammatory bowel disease. Collectively, our studies define innate immune IL-10R signaling as a key factor regulating mucosal immune homeostasis in mice and humans.


Journal of Cell Science | 2005

The nuclear-envelope protein and transcriptional repressor LAP2β interacts with HDAC3 at the nuclear periphery, and induces histone H4 deacetylation

Raz Somech; Sigal Shaklai; Orit Geller; Ninette Amariglio; Amos J. Simon; Gideon Rechavi; Einav Nili Gal-Yam

Nuclear-envelope proteins have been implicated in diverse and fundamental cell functions, among them transcriptional regulation. Gene expression at the territory of the nuclear periphery is known to be repressed by epigenetic modifications such as histone deacetylation and methylation. However, the mechanism by which nuclear-envelope proteins are involved in such modifications is still obscure. We have previously shown that LAP2β, an integral nuclear-envelope protein that contains the chromatin-binding LEM domain, was able to repress the transcriptional activity of the E2F5-DP3 heterodimer. Here, we show that LAP2βs repressive activity is more general, encompassing various E2F members as well as other transcription factors such as p53 and NF-κB. We further show that LAP2β interacts at the nuclear envelope with HDAC3, a class-I histone deacetylase, and that TSA (an HDAC inhibitor) abrogates LAP2βs repressive activity. Finally, we show that LAP2β is capable of inducing histone-H4 deacetylation. Our data provide evidence for the existence of a previously unknown repressive complex, composed of an integral nuclear membrane protein and a histone modifier, at the nuclear periphery.


The Journal of Allergy and Clinical Immunology | 2013

Deficiency of caspase recruitment domain family, member 11 (CARD11), causes profound combined immunodeficiency in human subjects

Polina Stepensky; Baerbel Keller; Mary Buchta; Anne-Kathrin Kienzler; Orly Elpeleg; Raz Somech; Sivan Cohen; Idit Shachar; Lisa A. Miosge; Michael Schlesier; Ilka Fuchs; Anselm Enders; Hermann Eibel; Bodo Grimbacher; Klaus Warnatz

BACKGROUND Profound combined immunodeficiency can present with normal numbers of T and B cells, and therefore the functional defect of the cellular and humoral immune response is often not recognized until the first severe clinical manifestation. Here we report a patient of consanguineous descent presenting at 13 months of age with hypogammaglobulinemia, Pneumocystis jirovecii pneumonia, and a suggestive family history. OBJECTIVE We sought to identify the genetic alteration in a patient with combined immunodeficiency and characterize human caspase recruitment domain family, member 11 (CARD11), deficiency. METHODS Molecular, immunologic, and functional assays were performed. RESULTS The immunologic characterization revealed only subtle changes in the T-cell and natural killer cell compartment, whereas B-cell differentiation, although normal in number, was distinctively blocked at the transitional stage. Genetic evaluation revealed a homozygous deletion of exon 21 in CARD11 as the underlying defect. This deletion abrogated protein expression and activation of the canonical nuclear factor κB (NF-κB) pathway in lymphocytes after antigen receptor or phorbol 12-myristate 13-acetate stimulation, whereas CD40 signaling in B cells was preserved. The abrogated activation of the canonical NF-κB pathway was associated with severely impaired upregulation of inducible T-cell costimulator, OX40, cytokine production, proliferation of T cells, and B cell-activating factor receptor expression on B cells. CONCLUSION Thus in patients with CARD11 deficiency, the combination of impaired activation and especially upregulation of inducible T-cell costimulator on T cells, together with severely disturbed peripheral B-cell differentiation, apparently leads to a defective T-cell/B-cell cooperation and probably germinal center formation and clinically results in severe immunodeficiency. This report discloses the crucial and nonredundant role of canonical NF-κB activation and specifically CARD11 in the antigen-specific immune response in human subjects.


Blood Cells Molecules and Diseases | 2012

Hematologically important mutations: Leukocyte Adhesion Deficiency (first update)

Edith van de Vijver; Anne Maddalena; Ozden Sanal; Steven M. Holland; Gulbu Uzel; Manisha Madkaikar; Martin de Boer; Karin van Leeuwen; M. Yavuz Köker; Nima Parvaneh; Alain Fischer; S.K. Alex Law; Nigel Klein; F. Ilhan Tezcan; Ekrem Unal; Turkan Patiroglu; Bernd H. Belohradsky; Klaus Schwartz; Raz Somech; Taco W. Kuijpers; Dirk Roos

Leukocyte adhesion deficiency (LAD) is an immunodeficiency caused by defects in the adhesion of leukocytes (especially neutrophils) to the blood vessel wall. As a result, patients with LAD suffer from severe bacterial infections and impaired wound healing, accompanied by neutrophilia. In LAD-I, mutations are found in ITGB2, the gene that encodes the β subunit of the β(2) integrins. This syndrome is characterized directly after birth by delayed separation of the umbilical cord. In the rare LAD-II disease, the fucosylation of selectin ligands is disturbed, caused by mutations in SLC35C1, the gene that encodes a GDP-fucose transporter of the Golgi system. LAD-II patients lack the H and Lewis Le(a) and Le(b) blood group antigens. Finally, in LAD-III (also called LAD-I/variant) the conformational activation of the hematopoietically expressed β integrins is disturbed, leading to leukocyte and platelet dysfunction. This last syndrome is caused by mutations in FERMT3, encoding the kindlin-3 protein in all blood cells that is involved in the regulation of β integrin conformation.


The Journal of Allergy and Clinical Immunology | 2012

Defining combined immunodeficiency

Chaim M. Roifman; Raz Somech; Fotini Kavadas; Linda Pires; Amit Nahum; Ilan Dalal; Eyal Grunebaum

BACKGROUND Although the extreme condition of typical profound T-cell dysfunction (TD), severe combined immunodeficiency (SCID), has been carefully defined, we are currently in the process of better defining less typical T-cell deficiencies, which tend to present with autologous circulating T-cell combined immunodeficiency (CID). Because autologous cells might interfere with the outcome of bone marrow transplantation, protocols usually include conditioning regimens. Therefore it is important to define the numbers of autologous cells usually detected in patients with CID versus those with SCID. OBJECTIVES We sought to determine the number of circulating T cells in patients with SCID as opposed to those with CID, to study their function, and to evaluate their possible detection during newborn screening using T-cell receptor excision circle (TREC) analysis. METHODS Numbers of circulating CD3(+) T cells (as determined by means of flow cytometry), in vitro responses to PHA, and TREC levels, all measured at presentation, were compiled from the research charts of the entire cohort of patients followed prospectively for T-cell immunodeficiency at the Hospital for Sick Children. Clinical data were ascertained retrospectively from the patients hospital charts. RESULTS One hundred three patients had CD3(+) determinations, and 80 of them had a genetic diagnosis. All patients considered to have typical SCID had CD3(+) T-cell counts of fewer than 500 cells/μL. Some variability was observed among different genotypes. In vitro responses to PHA were recorded in 88 patients, of whom 68 had a genetic diagnosis. All patients with low CD3(+) T-cell numbers (<500 cells/μL) also had markedly decreased responses to PHA (typical SCIDs). However, responses ranged widely in the groups of patients with TD who had more than 500 CD3(+) autologous circulating T cells per microliter. Although patients with Omenn syndrome and ζ chain-associated protein, 70 kDa (ZAP70), and purine nucleoside phosphorylase (PNP) deficiencies had low responses, patients with the p.R222C mutation in the IL-2 receptor γ(IL2RG) gene as well as IL-10 receptor and CD40 ligand deficiencies had normal or near-normal mitogen responses. Finally, 51 patients had TREC levels measured. All patients with typical SCID, Omenn syndrome, and ZAP70 deficiency had low TREC levels. In contrast, patients with mutations in forkhead box protein 3 (FOXP3), CD40 ligand (CD40L), and IL-10 receptor α(IL10RA), as well as patients with the p.R222C mutation in the IL2RG gene, had normal TREC levels. CONCLUSION Patients with typical SCID can be defined as having fewer than 500 circulating CD3(+) T cells. Most patients with autologous T cells still have profound TD, as defined by reduced in vitro function and thymus output. Some patients with conditions including TD have normal TREC levels and will therefore not be detected in a TREC-based newborn screening program.


The New England Journal of Medicine | 2013

A congenital neutrophil defect syndrome associated with mutations in VPS45

Thierry Vilboux; Atar Lev; May Christine V. Malicdan; Amos J. Simon; Päivi M Järvinen; Tomas Racek; Jacek Puchałka; Raman Sood; Blake Carrington; Kevin Bishop; James C. Mullikin; Marjan Huizing; Ben Zion Garty; Eran Eyal; Baruch Wolach; Ronit Gavrieli; Amos Toren; Michalle Soudack; Osama M. Atawneh; Tatiana Babushkin; Ginette Schiby; Andrew R. Cullinane; Camila Avivi; Sylvie Polak-Charcon; Iris Barshack; Ninette Amariglio; Gideon Rechavi; Jutte van der Werff ten Bosch; Yair Anikster; Christoph Klein

BACKGROUND Neutrophils are the predominant phagocytes that provide protection against bacterial and fungal infections. Genetically determined neutrophil disorders confer a predisposition to severe infections and reveal novel mechanisms that control vesicular trafficking, hematopoiesis, and innate immunity. METHODS We clinically evaluated seven children from five families who had neutropenia, neutrophil dysfunction, bone marrow fibrosis, and nephromegaly. To identify the causative gene, we performed homozygosity mapping using single-nucleotide polymorphism arrays, whole-exome sequencing, immunoblotting, immunofluorescence, electron microscopy, a real-time quantitative polymerase-chain-reaction assay, immunohistochemistry, flow cytometry, fibroblast motility assays, measurements of apoptosis, and zebrafish models. Correction experiments were performed by transfecting mutant fibroblasts with the nonmutated gene. RESULTS All seven affected children had homozygous mutations (Thr224Asn or Glu238Lys, depending on the childs ethnic origin) in VPS45, which encodes a protein that regulates membrane trafficking through the endosomal system. The level of VPS45 protein was reduced, as were the VPS45 binding partners rabenosyn-5 and syntaxin-16. The level of β1 integrin was reduced on the surface of VPS45-deficient neutrophils and fibroblasts. VPS45-deficient fibroblasts were characterized by impaired motility and increased apoptosis. A zebrafish model of vps45 deficiency showed a marked paucity of myeloperoxidase-positive cells (i.e., neutrophils). Transfection of patient cells with nonmutated VPS45 corrected the migration defect and decreased apoptosis. CONCLUSIONS Defective endosomal intracellular protein trafficking due to biallelic mutations in VPS45 underlies a new immunodeficiency syndrome involving impaired neutrophil function. (Funded by the National Human Genome Research Institute and others.).


Science Translational Medicine | 2015

Timely and spatially regulated maturation of B and T cell repertoire during human fetal development

Erez Rechavi; Atar Lev; Yu Nee Lee; Amos J. Simon; Yoav Yinon; Schlomo Lipitz; Ninette Amariglio; Boaz Weisz; Luigi D. Notarangelo; Raz Somech

Immunocompetence in the developing fetus is temporally and spatially regulated. Developing Immunity The adaptive immune response plays a critical role in protecting the body from both foreign pathogens and internal dangers such as cancer. However, little is known about how the immune system develops during human gestation. Rechavi et al. analyzed differences in B and T lymphocyte ontogeny from 12 to 26 weeks of gestational age. They found that B cell development precedes T cell development and that repertoire maturation is both temporally and spatially regulated. These data can be used as a baseline to improve immune function in developing fetuses and to assess the effects of therapeutic interventions. Insights into the ontogeny of the human fetal adaptive immune system are of great value for understanding immunocompetence of the developing fetus. However, to date, this has remained largely uncharted territory, in large part because blood samples from healthy, early gestation fetuses have been hard to come by. In a comprehensive study, we analyzed levels of T cell receptor excision circles (TRECs), signal-joint κ receptor excision circles (sjKRECs), and intron recombination signal sequence–K-deleting element (iRSS-Kde) rearrangement, and T and B lymphocyte repertoire clonality in human fetuses from 12 to 26 weeks of gestational age. Using next-generation sequencing, we analyzed the diversity and complexity of T cell receptor β (TRB) and immunoglobulin heavy chain (IGH) repertoires in four fetuses at 12, 13, 22, and 26 weeks of gestation and in healthy full-term infants. We report the progressive increase of TREC, sjKREC, and iRSS-Kde levels over time and confirm that B cell development precedes T cell development in the human fetus. Temporally and spatially regulated maturation of B and T cell repertoire diversity and complexity during human fetal development was observed, including evidence that immunoglobulin somatic hypermutation and class switch recombination occur already during intrauterine life. Our results help define physiological levels of immunodeficiency in premature infants and may serve as a reference for future studies aimed at investigating the impact of intrauterine pathologies on fetal immune development and function.


The Journal of Allergy and Clinical Immunology | 2009

Reduced central tolerance in Omenn syndrome leads to immature self-reactive oligoclonal T cells.

Raz Somech; Amos J. Simon; Atar Lev; Ilan Dalal; Zvi Spirer; Itamar Goldstein; Meital Nagar; Ninette Amariglio; Gideon Rechavi; Chaim M. Roifman

BACKGROUND Omenn syndrome (OS) is characterized by a peculiar severe T-cell immune deficiency associated with autoimmunelike manifestations. Dysregulations of the central and peripheral immune tolerance, mediated by the protein autoimmune regulator (AIRE) and regulatory T cells, respectively, were proposed as possible mechanisms of this aberrant inflammatory process. OBJECTIVE We studied mechanisms of central and peripheral tolerance in patients with OS and also examined the gene expression profile associated with OS features. METHODS T-cell receptor diversity, DNA rearrangement, and the expression of AIRE and forkhead box P3 mRNA as well as the expression of regulatory T cells in cells obtained from patients with OS were studied. Characterization of gene expression in these cells was carried out by using the TaqMan Low-Density Array. RESULTS Transcript expression of peripheral blood AIRE but not forkhead box P3 was reduced in patients with OS. The expression of natural killer T and regulatory T cells was normal, although the latter showed an abnormal CD4-negative population. Patients with OS have oligoclonal T cells with limited DNA recombination activity, including the presence of early but not late T-cell maturation events, regardless of the genetic defect underlying the syndrome. The transcriptional profile associated with OS features reveals significant changes in 25.5% of the tested genes compared with normal control. CONCLUSION Our findings suggest that T-cell oligoclonal expansion in OS emanates from an incomplete block before the maturation stage of negative selection, which may explain escape of autoreactive T cells from the thymus. Dysregulated genes in patients with OS are closely involved with self-tolerance and autoimmunity.


Bone Marrow Transplantation | 2006

Bone marrow transplantation for cartilage-hair-hypoplasia

R Guggenheim; Raz Somech; E Grunebaum; A Atkinson; C M Roifman

The association of cartilage hair hypoplasia (CHH) with severe combined immunodeficiency (SCID) has been known for more than three decades. Bone marrow transplantation (BMT) remains the only effective treatment that might cure SCID. Surprisingly little has been reported on the experience with BMT in CHH. We report here survival and long-term reconstitution of immunity after BMT in three patients with CHH. Regardless of whether a related human leukocyte antigen-matched or unrelated matched donors were used as the source of BMT, all patients are alive and well 5–20 years after BMT. Engraftment appears robust with most cells of donors origin. Repeated evaluation of the immune system showed normal cellular and humoral immunity. Our results should encourage the use of BMT in patients with CHH who have profound immunodeficiency.


The Journal of Allergy and Clinical Immunology | 2010

Characterization of ζ-associated protein, 70 kd (ZAP70)–deficient human lymphocytes

Chaim M. Roifman; Harjit Dadi; Raz Somech; Amit Nahum; Nigel Sharfe

BACKGROUND ζ-associated protein, 70 kd (ZAP70), deficiency in human subjects results in a combined immunodeficiency characterized by normal numbers of circulating CD4 T cells and CD8 lymphocytopenia. Patients who live beyond infancy can also experience autoimmune manifestations. OBJECTIVES We sought to further characterize the nature of the T-cell populations found in ZAP70-deficient patients and explored the mechanisms that might predispose them to autoimmunity. METHODS T-cell development was assessed by examining T-cell receptor (TCR) gene rearrangements and thymopoiesis by measuring TCR exclusion circle levels. TCR repertoire on CD4 and CD8 T-cell populations was assessed by means of flow cytometry. T-cell gene expression patterns were examined by means of exonic microarray analysis and apoptotic responses by means of Annexin V binding and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling. RESULTS Cells displaying recombination events from all stages of TCR gene rearrangement were present in the peripheral blood of ZAP70-deficient patients; however, the late TCRD-deleting rearrangement was significantly reduced. TCR exclusion circle levels were also found to be low. Surprisingly, all Vβ families were detected in both CD4(+) and CD8(+) circulating T cells. Several Vβ families were significantly overrepresented, which is reminiscent of autoimmune disorders. Levels of mRNA for cytotoxic T lymphocyte-associated antigen 4, TGF-β, and IL-10 were found to be low, a signature of autoimmunity. Finally, Fas-mediated CD4 T-cell apoptosis was found to be reduced in vitro, and staining of thymus biopsy specimens revealed reduced thymocyte apoptosis. CONCLUSION We show that in the absence of ZAP70, thymopoiesis is altered and differentiation to double-positive cells is hampered. Circulating T cells appear poorly regulated, do not differentiate into T(H)2 T cells, lack a number of inhibitory growth controls, and display reduced apoptosis, all predisposing patients to exaggerated inflammation and autoimmunity.

Collaboration


Dive into the Raz Somech's collaboration.

Researchain Logo
Decentralizing Knowledge