Raza S. Zaheer
University of Calgary
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Raza S. Zaheer.
The Journal of Allergy and Clinical Immunology | 2008
Richard Leigh; Wale Oyelusi; Shahina Wiehler; Rommy Koetzler; Raza S. Zaheer; Robert Newton; David Proud
BACKGROUND Childhood human rhinovirus (HRV) infections are associated with an increased risk of asthma. We reasoned that HRV infections might be important in the pathogenesis of airway remodeling, thereby providing a mechanism by which these children are at risk of asthma. OBJECTIVE We sought to determine whether HRV infection of airway epithelial cells regulates production of growth factors associated with airway remodeling and to determine whether vascular endothelial growth factor (VEGF) was upregulated in airways during HRV-induced natural colds. METHODS Cultured human airway epithelial cells were infected with HRV. Amphiregulin, activin A, and VEGF protein levels were assayed by means of ELISA, and VEGF mRNA was quantified by using real-time RT-PCR. Pharmacologic inhibitors were used to assess the role of mitogen-activated protein kinase and nuclear factor kappaB pathways. Nasal lavage samples from subjects with confirmed natural HRV infections were assayed for VEGF protein and compared with baseline levels and with control levels. RESULTS HRV infection upregulated amphiregulin, activin A, and VEGF protein levels compared with control media (P < .05). VEGF gene expression was maximally induced 3 hours after infection. HRV-induced generation of VEGF was regulated by p38 mitogen-activated protein kinase and extracellular signal-regulated kinase 1/2 pathways but did not depend on nuclear factor kappaB activation. In subjects with HRV infections, VEGF levels during peak cold symptoms were significantly higher than at baseline (P = .005) or in control subjects (P < .01). CONCLUSION HRV-16 infection upregulates amphiregulin, activin A, and VEGF in airway epithelial cells, and HRV infections in vivo upregulate airway VEGF production.
The Journal of Neuroscience | 2015
Charlotte D'Mello; Natalie J. Ronaghan; Raza S. Zaheer; Michael Dicay; Tai Le; Wallace K. MacNaughton; Michael Surrette; Mark G. Swain
Patients with systemic inflammatory diseases (e.g., rheumatoid arthritis, inflammatory bowel disease, chronic liver disease) commonly develop debilitating symptoms (i.e., sickness behaviors) that arise from changes in brain function. The microbiota-gut-brain axis alters brain function and probiotic ingestion can influence behavior. However, how probiotics do this remains unclear. We have previously described a novel periphery-to-brain communication pathway in the setting of peripheral organ inflammation whereby monocytes are recruited to the brain in response to systemic TNF-α signaling, leading to microglial activation and subsequently driving sickness behavior development. Therefore, we investigated whether probiotic ingestion (i.e., probiotic mixture VSL#3) alters this periphery-to-brain communication pathway, thereby reducing subsequent sickness behavior development. Using a well characterized mouse model of liver inflammation, we now show that probiotic (VSL#3) treatment attenuates sickness behavior development in mice with liver inflammation without affecting disease severity, gut microbiota composition, or gut permeability. Attenuation of sickness behavior development was associated with reductions in microglial activation and cerebral monocyte infiltration. These events were paralleled by changes in markers of systemic immune activation, including decreased circulating TNF-α levels. Our observations highlight a novel pathway through which probiotics mediate cerebral changes and alter behavior. These findings allow for the potential development of novel therapeutic interventions targeted at the gut microbiome to treat inflammation-associated sickness behaviors in patients with systemic inflammatory diseases. SIGNIFICANCE STATEMENT This research shows that probiotics, when eaten, can improve the abnormal behaviors (including social withdrawal and immobility) that are commonly associated with inflammation. Probiotics are able to cause this effect within the body by changing how the immune system signals the brain to alter brain function. These findings broaden our understanding of how probiotics may beneficially affect brain function in the context of inflammation occurring within the body and may open potential new therapeutic alternatives for the treatment of these alterations in behavior that can greatly affect patient quality of life.
PLOS ONE | 2012
David Proud; Magdalena H. Hudy; Shahina Wiehler; Raza S. Zaheer; Minaa A. Amin; Jonathan B. Pelikan; Claire E. Tacon; Tabitha O. Tonsaker; Brandie L. Walker; Cora Kooi; Suzanne L. Traves; Richard Leigh
Human rhinovirus (HRV) infections trigger acute exacerbations of chronic obstructive pulmonary disease (COPD) and asthma. The human airway epithelial cell is the primary site of HRV infection and responds to infection with altered expression of multiple genes, the products of which could regulate the outcome to infection. Cigarette smoking aggravates asthma symptoms, and is also the predominant risk factor for the development and progression of COPD. We, therefore, examined whether cigarette smoke extract (CSE) modulates viral responses by altering HRV-induced epithelial gene expression. Primary cultures of human bronchial epithelial cells were exposed to medium alone, CSE alone, purified HRV-16 alone or to HRV-16+ CSE. After 24 h, supernatants were collected and total cellular RNA was isolated. Gene array analysis was performed to examine mRNA expression. Additional experiments, using real-time RT-PCR, ELISA and/or western blotting, validated altered expression of selected gene products. CSE and HRV-16 each induced groups of genes that were largely independent of each other. When compared to gene expression in response to CSE alone, cells treated with HRV+CSE showed no obvious differences in CSE-induced gene expression. By contrast, compared to gene induction in response to HRV-16 alone, cells exposed to HRV+CSE showed marked suppression of expression of a number of HRV-induced genes associated with various functions, including antiviral defenses, inflammation, viral signaling and airway remodeling. These changes were not associated with altered expression of type I or type III interferons. Thus, CSE alters epithelial responses to HRV infection in a manner that may negatively impact antiviral and host defense outcomes.
American Journal of Respiratory Cell and Molecular Biology | 2010
Raza S. Zaheer; David Proud
Human rhinovirus (HRV) infections are associated with exacerbations of lower-airway diseases. HRV-induced production of proinflammatory chemokines, such as CXCL10, from infected airway epithelial cells may play a role in the pathogenesis of exacerbations. We have previously shown that the MAP/ERK kinase (MEK) pathway selectively down-regulates HRV-16-induced epithelial production of CXCL10 by modulating nuclear translocation and/or binding of IFN regulatory factor (IRF)-1 with the CXCL10 promoter. Using primary human bronchial epithelial cells (HBEs) and the BEAS-2B bronchial epithelial cell line, we have further evaluated the role of IRF-1 in HRV-16-induced epithelial CXCL10 production. We demonstrate that HRV-16 induced the expression of both IRF-1 mRNA and protein in a time-dependent manner. Interestingly, MEK1 pathway inhibition with PD98059 or U0126 significantly enhanced HRV-16-induced IRF-1 mRNA levels in BEAS-2B cells and HBEs, although IRF-1 protein expression was only enhanced in HBEs. Using short interfering RNA (siRNA), we both inhibited HRV-16-induced IRF-1 expression and reduced nuclear translocation and/or binding of IRF-1 to the CXCL10 promoter. Knockdown of IRF-1 also led to a significant reduction in HRV-16-induced CXCL10 production, confirming that IRF-1 is directly involved in HRV-16-induced CXCL10 expression in epithelial cells. Moreover, pronounced IRF-1 knockdown abrogated the enhancement of CXCL10 normally induced by inhibitors of the MEK1 pathway. Phosphatase experiments indicate that IRF-1 binding to the CXCL10 promoter is not dependent upon its phosphorylation state. We conclude that HRV-16-induced CXCL10 production is dependent upon IRF-1, and that the MEK1 pathway-dependent suppression of CXCL10 expression is also mediated via effects on IRF-1.
The Journal of Allergy and Clinical Immunology | 2009
Rommy Koetzler; Raza S. Zaheer; Shahina Wiehler; Neil S. Holden; Mark A. Giembycz; David Proud
BACKGROUND Human rhinovirus (HRV) infections trigger exacerbations of asthma and chronic obstructive pulmonary disease. Nitric oxide (NO) inhibits HRV replication in human airway epithelial cells and suppresses HRV-induced epithelial production of several cytokines and chemokines. OBJECTIVE We sought to delineate the mechanisms by which NO inhibits HRV-induced epithelial production of CXCL10, a chemoattractant for type 1 T cells and natural killer cells. METHODS Primary human bronchial epithelial cells or cells of the BEAS-2B human bronchial epithelial cell line were exposed to HRV-16 in the presence or absence of the NO donor 3-(2-hydroxy-2-nitroso-1-propylhydrazino)-1-propanamine (PAPA NONOate). A cGMP analogue and an inhibitor of soluble guanylyl cyclase were used to examine the role of the cyclic guanosine monophosphate (cGMP) pathway in the actions of NO. BEAS-2B cells were transfected with CXCL10 promoter-luciferase constructs and the effects of PAPA NONOate were examined to study mechanisms of transcriptional regulation. Electrophoretic mobility shift assays were also used. RESULTS PAPA NONOate inhibited HRV-16-induced increases in CXCL10 mRNA and protein. Inhibition of CXCL10 production occurred through a cGMP-independent pathway. PAPA NONOate inhibited HRV-16-induced CXCL10 transcription by blocking nuclear translocation, binding, or both of both nuclear factor kappaB and IFN response factors (IRFs) to their respective recognition elements in the CXCL10 promoter. CONCLUSIONS NO inhibits HRV-16-induced production of CXCL10 by inhibiting viral activation of nuclear factor kappaB and of IRFs, including IRF-1, through a cGMP-independent pathway. The broad-ranging inhibition of HRV-induced epithelial cytokine and chemokine production by NO suggests a potential therapeutic utility of NO donors in viral exacerbations of asthma and chronic obstructive pulmonary disease.
Journal of Immunology | 2009
Raza S. Zaheer; Rommy Koetzler; Neil S. Holden; Shahina Wiehler; David Proud
Human rhinovirus (HRV) infections can trigger exacerbations of lower airway diseases. Infection of airway epithelial cells induces production of a number of proinflammatory chemokines that may exacerbate airway inflammation, including CXCL10, a chemoattractant for type 1 lymphocytes and NK cells. Primary human bronchial epithelial cells and the BEAS-2B human bronchial epithelial cell line were used to examine the role of MAPK pathways in HRV-16-induced production of CXCL10. Surprisingly, PD98059 and U0126, two inhibitors of the MEK1/2-ERK MAPK pathway, significantly enhanced HRV-16-induced CXCL10 mRNA and protein. This enhancement was not seen with IFN-β-induced production of CXCL10. Studies using small interfering RNA revealed that knockdown of MEK1, but not MEK2, was associated with enhanced HRV-induced CXCL10 production. Promoter construct studies revealed that PD98059 and U0126 enhanced HRV-16-induced transcriptional activation of CXCL10. HRV-16-induced promoter activation was regulated by two NF-κB binding sites, κB1 and κB2, and by an IFN-stimulated response element. Inhibitors of the MEK1/2-ERK pathway did not alter HRV-16-induced activation of tandem repeat κB1 or κB2 constructs, nor did they alter HRV-16-induced nuclear translocation/binding of NF-κB to either κB1 or κB2 recognition sequences. Furthermore, PD98059 and U0126 did not alter phosphorylation or degradation of IκBα. In contrast, inhibitors of the MEK1/2-ERK pathway, and small interfering RNA knockdown of MEK1, enhanced nuclear translocation/binding of IFN regulatory factor (IRF)-1 to the IFN-stimulated response element recognition sequence in HRV-16 infected cells. We conclude that activation of MEK1 selectively down-regulates HRV-16-induced expression of CXCL10 via modulation of IRF-1 interactions with the gene promoter in human airway epithelial cells.
The Journal of Allergy and Clinical Immunology | 2009
Rommy Koetzler; Raza S. Zaheer; Robert Newton; David Proud
BACKGROUND Nitric oxide (NO) has previously been shown to inhibit human rhinovirus (HRV) replication in airway epithelial cells and to inhibit rhinovirus-induced epithelial cytokine and chemokine production independently of its effects on viral replication by modulating nuclear translocation and binding of transcription factors. OBJECTIVE To define the molecular mechanisms by which NO inhibits HRV-16-induced epithelial production of CXCL10 by affecting nuclear translocation and binding of nuclear factor-kappaB (NF-kappaB) and IFN regulatory factor 1 (IRF-1). METHODS Cultured human airway epithelial cells were infected with HRV-16 in the absence or presence of a NO donor, or were preincubated with 2 highly selective inhibitors of inhibitor of kappaB kinase (IKK)beta and then infected with HRV-16. Effects on the NF-kappaB and IRF-1 pathways were examined by using electrophoretic mobility shift assays, Western blotting, and real-time RT-PCR. RESULTS Nitric oxide directly inhibited the binding of both recombinant NF-kappaB p50 protein and recombinant IRF-1 to their recognition sequences from the CXCL10 promoter. NO also inhibited phosphorylation of the NF-kappaB inhibitor, IkappaBalpha, in HRV-16-infected cells. In addition, both NO and inhibitors of IKKbeta inhibited viral induction of IRF-1 mRNA and protein. CONCLUSIONS Nitric oxide blocks rhinovirus-mediated activation and nuclear translocation of both NF-kappaB and IRF-1. NO also directly inhibits the binding of each of these transcription factors to their respective recognition sites in the CXCL10 promoter. In addition, the ability of HRV-16 to induce epithelial expression of IRF-1 is dependent, at least in part, on viral activation of NF-kappaB.
Mucosal Immunology | 2014
Raza S. Zaheer; Shahina Wiehler; Magdalena H. Hudy; Suzanne L. Traves; Jonathan B. Pelikan; Richard Leigh; David Proud
Human rhinovirus (HRV) infections trigger exacerbations of lower airway diseases. HRV infects human airway epithelial cells and induces proinflammatory and antiviral molecules that regulate the response to HRV infection. Interferon (IFN)-stimulated gene of 15 kDa (ISG15) has been shown to regulate other viruses. We now show that HRV-16 infection induces both intracellular epithelial ISG15 expression and ISG15 secretion in vitro. Moreover, ISG15 protein levels increased in nasal secretions of subjects with symptomatic HRV infections. HRV-16-induced ISG15 expression is transcriptionally regulated via an IFN regulatory factor pathway. ISG15 does not directly alter HRV replication but does modulate immune signaling via the viral sensor protein RIG-I to impact production of CXCL10, which has been linked to innate immunity to viruses. Extracellular ISG15 also alters CXCL10 production. We conclude that ISG15 has a complex role in host defense against HRV infection, and that additional studies are needed to clarify the role of this molecule.
American Journal of Physiology-gastrointestinal and Liver Physiology | 2016
Natalie J. Ronaghan; Judie Shang; Vadim Iablokov; Raza S. Zaheer; Pina Colarusso; Sébastien P. Dion; Antoine Désilets; Richard Leduc; Jerrold R. Turner; Wallace K. MacNaughton
Barrier dysfunction is a characteristic of the inflammatory bowel diseases (IBD), Crohns disease and ulcerative colitis. Understanding how the tight junction is modified to maintain barrier function may provide avenues for treatment of IBD. We have previously shown that the apical addition of serine proteases to intestinal epithelial cell lines causes a rapid and sustained increase in transepithelial electrical resistance (TER), but the mechanisms are unknown. We hypothesized that serine proteases increase barrier function through trafficking and insertion of tight junction proteins into the membrane, and this could enhance recovery of a disrupted monolayer after calcium switch or cytokine treatment. In the canine epithelial cell line, SCBN, we showed that matriptase, an endogenous serine protease, could potently increase TER. Using detergent solubility-based cell fractionation, we found that neither trypsin nor matriptase treatment changed levels of tight junction proteins at the membrane. In a fast calcium switch assay, serine proteases did not enhance the rate of recovery of the junction. In addition, serine proteases could not reverse barrier disruption induced by IFNγ and TNFα. We knocked down occludin in our cells using siRNA and found this prevented the serine protease-induced increase in TER. Using fluorescence recovery after photobleaching (FRAP), we found serine proteases induce a greater mobile fraction of occludin in the membrane. These data suggest that a functional tight junction is needed for serine proteases to have an effect on TER, and that occludin is a crucial tight junction protein in this mechanism.
PLOS ONE | 2015
Michael Dicay; Christina Hirota; Natalie J. Ronaghan; Michael A. Peplowski; Raza S. Zaheer; Colin A. Carati; Wallace K. MacNaughton
Inflammatory bowel diseases are associated with dysregulated electrolyte and water transport and resultant diarrhea. Aquaporins are transmembrane proteins that function as water channels in intestinal epithelial cells. We investigated the effect of the inflammatory cytokine, interferon-γ, which is a major player in inflammatory bowel diseases, on aquaporin-1 expression in a mouse colonic epithelial cell line, CMT93. CMT93 monolayers were exposed to 10 ng/mL interferon-γ and aquaporin-1 mRNA and protein expressions were measured by real-time PCR and western blot, respectively. In other experiments, CMT93 cells were pretreated with inhibitors or were transfected with siRNA to block the effects of Janus kinases, STATs 1 and 3, or interferon regulatory factor 2, prior to treatment with interferon-γ. Interferon-γ decreased aquaporin-1 expression in mouse intestinal epithelial cells in a manner that did not depend on the classical STAT1/JAK2/IRF-1 pathway, but rather, on an alternate Janus kinase (likely JAK1) as well as on STAT3. The pro-inflammatory cytokine, interferon-γ may contribute to diarrhea associated with intestinal inflammation in part through regulation of the epithelial aquaporin-1 water channel via a non-classical JAK/STAT receptor signalling pathway.