Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Razvan Anisca is active.

Publication


Featured researches published by Razvan Anisca.


Proceedings of the American Mathematical Society | 2010

The ergodicity of weak Hilbert spaces

Razvan Anisca

This paper complements a recent result of Dilworth, Ferenczi, Kutzarova and Odell regarding the ergodicity of strongly asymptotic l p spaces. We state this result in a more general form, involving domination relations, and we show that every asymptotically Hilbertian space which is not isomorphic to l 2 is ergodic. In particular, every weak Hilbert space which is not isomorphic to l 2 must be ergodic. Throughout the paper we construct explicitly the maps which establish the fact that the relation E 0 is Borel reducible to isomorphism between subspaces of the Banach spaces involved.


Canadian Mathematical Bulletin | 2001

A Technique of Studying Sums of Central Cantor Sets

Razvan Anisca; Monica Ilie

Thispaperisconcernedwiththestructureofthearithmeticsumofafinitenumberofcentral Cantor sets. The technique used to study this consists of a duality between central Cantor sets and sets of subsums of certain infinite series. One consequence is that the sum of a finite number of central Cantor sets is one of the following: a finite union of closed intervals, homeomorphic to the Cantor ternary set or an M-Cantorval.


Nonlinearity | 2009

On the structure of arithmetic sums of Cantor sets with constant ratios of dissection

Razvan Anisca; Christopher Chlebovec

We investigate conditions which imply that the topological structure of the arithmetic sum of two Cantor sets with constant ratios of dissection at each step is either: a Cantor set, a finite union of closed intervals, or three mixed models (L, R and M-Cantorval). We obtain general results that apply in particular for the case of homogeneous Cantor sets, thus generalizing the results of Mendes and Oliveira. The method used here is new in this context. We also produce results regarding the arithmetic sum of two affine Cantor sets of a special kind.


Indiana University Mathematics Journal | 2005

MINIMAL VECTORS OF POSITIVE OPERATORS

Razvan Anisca; Vladimir G. Troitsky


Positivity | 2004

Unconditional decompositions in subspaces of l2(X)

Razvan Anisca


Journal of Mathematical Analysis and Applications | 2012

Subspaces of ℓ2(X) without the approximation property

Razvan Anisca; Christopher Chlebovec


Journal of Functional Analysis | 2017

On the classification of positions and complex structures in Banach spaces

Razvan Anisca; Valentin Ferenczi; Yolanda Moreno


Archive | 2012

Banach space theory

Razvan Anisca


Extracta mathematicae | 2011

On the Ergodicity of Banach Spaces with Property (H)

Razvan Anisca


Real analysis exchange | 2012

The Structure of Arithmetic Sums of Affine Cantor Sets

Razvan Anisca; Christopher Chlebovec; Monica Ilie

Collaboration


Dive into the Razvan Anisca's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yolanda Moreno

University of Extremadura

View shared research outputs
Researchain Logo
Decentralizing Knowledge