Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rc Barbour is active.

Publication


Featured researches published by Rc Barbour.


Australian Journal of Botany | 2003

Genetic pollution of native eucalypt gene pools—identifying the risks

Bm Potts; Rc Barbour; Ab Hingston; Re Vaillancourt

The contamination of native-eucalypt gene pools via exotic pollen is of concern as (i) pollen dispersal is believed to be much more widespread than seed dispersal, (ii) reproductive barriers are often weak between closely related species, (iii) European settlement has already had a major impact on Australias eucalypt woodlands and mallee, (iv) there has been a rapid expansion of eucalypt plantations and restoration plantings in Australia and (v) Australia is the custodian of an internationally important genetic resource. Pollen flow between plantation and native eucalypt species has already been reported and implementation of strategies to minimise the risk and consequences of genetic pollution is important if Australian forestry is to be considered sustainable. The risks associated with the introduction of non-native species, provenances and hybrids include direct effects on the gene pool through genetic pollution as well as indirect effects on dependent biodiversity. In many cases, the risk of genetic pollution will be small due to strong barriers to hybridisation between distantly related species, differences in flowering time or poor fitness of hybrids. There is no risk of hybridisation between species from the different major eucalypt genera and/or subgenera (e.g. symphyomyrts, monocalypts, eudesmids, bloodwoods and angophora). The main plantation species are symphyomyrts and within this subgenus, the probability of successful hybridisation generally decreases with increasing taxonomic distance between species. The planting of non-local provenances or improved material within the range of native populations has the potential to have an impact on local gene pools to varying degrees, indicating the requirement for the adoption of management strategies to reduce this risk. Naturally small or remnant populations are at particular risk. A framework for assessment of the risk of genetic pollution is developed herein.


Ecology | 2009

A geographic mosaic of genetic variation within a foundation tree species and its community-level consequences

Rc Barbour; Jm O'Reilly-Wapstra; David W. De Little; Gregory J. Jordan; Dorothy A. Steane; Jonathon R. Humphreys; Joseph K. Bailey; Thomas G. Whitham; Bm Potts

Knowledge of the manner in which genetic variation within a tree species affects associated communities and ecosystem processes across its entire range is important for understanding how geographic mosaics of genetic interactions might develop and support different communities. While numerous studies have investigated the community and ecosystem consequences of genetic variation at the hybrid cross type or genotype level within a species, none has investigated the community-level effects of intraspecific genetic variation across the geographic range of a widespread species. This is the scale at which geographic mosaics of coevolution are hypothesized to exist. Studies at this level are particularly important for foundation tree species, which typically support numerous microbial, fungal, plant, and animal communities. We studied genetic variation across eight geographical races of the forest tree Eucalyptus globulus representing its natural distribution across southeastern Australia. The study was conducted in a 15-year-old common garden trial based on families derived from single-tree open-pollinated seed collections from the wild. Neutral molecular genetic variation within E. globulus was also assessed and compared with genetic divergence in the phenotypic and community traits. Three major findings emerged. First, we found significant genetically based, hierarchical variation in associated communities corresponding to geographical races of E. globulus and families within races. Second, divergence in foliar communities at the racial level was associated with genetically based divergence in specific leaf morphological and chemical traits that have known defensive functions. Third, significant positive correlations between canopy community dissimilarity and both neutral molecular genetic and leaf quantitative genetic dissimilarity at the race level supported a genetic similarity rule. Our results argue that genetic variation within foundation tree species has the potential to be a significant driver of the geographical mosaics of variation typical of forest communities, which could have important ecological and evolutionary implications.


Molecular Ecology | 2009

Comparison of contemporary mating patterns in continuous and fragmented Eucalyptus globulus native forests.

Makiko Mimura; Rc Barbour; Bm Potts; Re Vaillancourt; Kazuo N. Watanabe

While habitat fragmentation is a central issue in forest conservation studies in the face of broad‐scale anthropogenic changes to the environment, its effects on contemporary mating patterns remain controversial. This is partly because of the inherent variation in mating patterns which may exist within species and the fact that few studies have replication at the landscape level. To study the effect of forest fragmentation on contemporary mating patterns, including effective pollen dispersal, we compared four native populations of the Australian forest tree, Eucalyptus globulus. We used six microsatellite markers to genotype 1289 open‐pollinated offspring from paired fragmented and continuous populations on the island of Tasmania and in Victoria on mainland Australia. The mating patterns in the two continuous populations were similar, despite large differences in population density. In contrast, the two fragmented populations were variable and idiosyncratic in their mating patterns, particularly in their pollen dispersal kernels. The continuous populations showed relatively high outcrossing rates (86–89%) and low correlated paternity (0.03–0.06) compared with the fragmented populations (65–79% and 0.12–0.20 respectively). A greater proportion of trees contributed to reproduction in the fragmented (de/d≥ 0.5) compared with the continuous populations (de/d = 0.03–0.04). Despite significant inbreeding in the offspring of the fragmented populations, there was little evidence of loss of genetic diversity. It is argued that enhanced medium‐ and long‐distance dispersal in fragmented landscapes may act to partly buffer the remnant populations from the negative effects of inbreeding and drift.


Conservation Genetics | 2005

Pollen dispersal from exotic eucalypt plantations

Rc Barbour; Bm Potts; Re Vaillancourt

The introgression of genes from exotic species or populations into gene pools of native species is a widespread concern in agricultural systems. This is also an issue of increasing importance in forest systems as there has been a dramatic expansion of tree plantations, which have now reached 180 million ha globally. This has recently occurred in Australia with eucalypts. To help assess the risk of genetic pollution, we assess the pattern of realised pollen dispersal from exotic Eucalyptus nitens plantations into native E. ovata forest in Tasmania. We assessed the frequency of F1 hybrids in open-pollinated seed collected from native E. ovata trees located at varying distance from three exotic E. nitens plantations in Tasmania. Over 119,000 seedlings were screened for morphological markers diagnostic of each species and the F1 hybrid. F1 hybridisation averaged 7.2% within 100 m of the exotic E. nitens, with one native tree reaching 56%, but diminished to 0.7% by 200–300 m and continued at this low level to the limits of the sampling at 1.6 km. The decay in the percentage of interspecific F1 hybridisation with distance followed a power function with a negative exponent (%F1 = 91.435distance−0.789; R2=0.84). Eucalyptus nitens is exclusively pollinated by small insects (smaller than honeybees), which the study shows can disperse pollen over 1.6 km. However, the restriction of most exotic F1 hybridisation to within 200 m of exotic plantations presents clear opportunities to manage the genetic impacts of plantations on native forests.


New Forests | 2002

Gene flow between introduced and native Eucalyptus species

Rc Barbour; Bm Potts; Re Vaillancourt; Wayne N. Tibbits; Rje Wiltshire

The first evidence of in situ F1 hybridisation between an introduced eucalypt plantation species, Eucalyptus nitens, and a native eucalypt species is presented. Open-pollinated seed was collected from a mature E. nitens trial and from the adjacent native species, E. ovata and E. viminalis on the island of Tasmania. Nearly 70 000 seedlings were grown to a size at which hybrids could be clearly distinguished from pure species seedlings on the basis of morphology and a nearly species-specific isozyme allele. Hybridisation was observed between E. nitens and E. ovata, but no hybrids involving E. viminalis were found. This pattern of hybridisation was consistent with the flowering time overlap between the E. ovata and E. nitens. Eucalyptus nitens progenies displayed a low and relatively homogeneous level of hybridisation, averaging 0.15% per tree. In comparison, the proportion of hybrids obtained from the adjacent E. ovata trees varied from 0.04 to 16% per tree. Whether progeny arising from such hybridisation will survive and grow in nature to allow for backcrossing and introgression of the exotic genes into the native population is not yet known.


Australian Journal of Botany | 2003

Gene flow between introduced and native Eucalyptus species: exotic hybrids are establishing in the wild

Rc Barbour; Bm Potts; Re Vaillancourt

F1 hybrids between exotic Eucalyptus nitens plantations and native E. ovata have previously been reported among seedlings grown from open-pollinated seed collected from E. ovata, on the island of Tasmania. Such exotic hybrid seedlings have now been found in the wild adjacent to plantations at three locations. The proportion of exotic hybrids in open-pollinated seed collected from nearby mature E. ovata was 5.5%. This level compares with only 0.4% for natural hybrids between native species at these sites (E. ovata, E. viminalis and E. rodwayi). Detection of hybrids was initially based on their deviant morphology, which was generally intermediate between parental species. This subjective classification was then successfully verified by morphometric and allozyme analyses. Pure E. nitens seedlings (wildlings) were restricted to within 30 m of these plantations, whereas established hybrids were found up to 310 m from the plantations. This pattern of establishment reflects dispersal of exotic seed and pollen respectively. It is likely that the recent expansion of the eucalypt plantation estate in Australia will cause an increase in the frequency of exotic hybrids. However, the long-term impact of such hybridisation is yet to be assessed.


Conservation Biology | 2009

Biodiversity consequences of genetic variation in bark characteristics within a foundation tree species.

Rc Barbour; Lynne G. Forster; Susan C. Baker; Dorothy A. Steane; Bm Potts

The developing field of community genetics has the potential to broaden the contribution of genetics to conservation biology by demonstrating that genetic variation within foundation plant species can act to structure associated communities of microorganisms, invertebrates, and vertebrates. We assessed the biodiversity consequences of natural patterns of intraspecific genetic variation within the widely distributed Australian forest tree, Eucalyptus globulus. We assessed genetic variation among geographic races of E. globulus (i.e., provenances, seed zones) in the characteristics of tree-trunk bark in a 17-year-old common garden and the associated response of a dependent macroarthropod community. In total, 180 macroarthropod taxa were identified following a collection from 100 trees of five races. We found substantial genetically based variation within E. globulus in the quantity and type of decorticating bark. In the community of organisms associated with this bark, significant variation existed among trees of different races in composition, and there was a two-fold difference in species richness (7-14 species) and abundance (22-55 individuals) among races. This community variation was tightly linked with genetically based variation in bark, with 60% of variation in community composition driven by bark characteristics. No detectable correlation was found, however, with neutral molecular markers. These community-level effects of tree genetics are expected to extend to higher trophic levels because of the extensive use of tree trunks as foraging zones by birds and marsupials. Our results demonstrate the potential biodiversity benefits that may be gained through conservation of intraspecific genetic variation within broadly distributed foundation species. The opportunities for enhancing biodiversity values of forestry and restoration plantings are also highlighted because such planted forests are increasingly becoming the dominant forest type in many areas of the world.


Australian Journal of Botany | 2005

Gene flow between introduced and native Eucalyptus species: crossability of native Tasmanian species with exotic E-nitens

Rc Barbour; Bm Potts; Re Vaillancourt

Eucalyptus nitens (Deane & Maiden) Maiden has been extensively introduced to the island of Tasmania for plantation purposes. Natural hybridisation with two native species has already been confirmed and this study aimed to determine which other Tasmanian native species could potentially hybridise with E. nitens. Controlled and supplementary pollinations with E. nitens pollen were undertaken on all Tasmanian native species that are potentially at risk of exotic gene flow and hence genetic pollution. Across the seven species tested by using controlled pollinations, seed set per flower, following E. nitens pollinations, was significantly less than for intraspecific outcross pollinations. No significant differences were evident in the percentage of seed that germinated or the percentage of germinants that grew into healthy seedlings in the glasshouse. Hybridity was verified by morphometric analyses and F-1 hybrid seedlings were clearly differentiated from parental species and generally intermediate in morphology. Supplementary E. nitens pollination of open-pollinated native flowers was conducted to simulate natural pollination where pollen competition would occur. Seven of the fifteen species tested produced F-1 hybrids in this case; however, further crossing is required to verify failed cross combinations. Although E. nitens can potentially hybridise with many native species, the results from both supplementary and controlled pollinations suggest the presence of post-pollination barriers of varying strength that need to be considered in assessing the risk of exotic gene flow from plantations.


Silvae Genetica | 2007

Gene flow between introduced and native Eucalyptus species: morphological analysis of tri-species and backcross hybrids involving E. nitens.

Rc Barbour; Bm Potts; Re Vaillancourt

Summary Morphometric analyses were conducted on second-generation tri-species and backcross hybrids in Eucalyptus. These hybrids were all produced using pollen from two E. nitens x cordata F1 hybrids and controlled pollination techniques. Tri-species hybrids were created with E. gunnii, E. ovata and E. viminalis as females, while backcrosses were produced with E. cordata. Multivariate analysis of seedling characteristics indicated that eighty percent of the backcross hybrids fell within the morphological range of E. cordata. All three cross combinations of the tri-species hybrids were biased away from E. nitens and towards their maternal parent and E. cordata. The inclusion of data for first-generation (F1) hybrids between the pure parental species in the current work showed the F1’s to be easily distinguishable from pure species, compared to second-generation hybrids. The use of morphology for detecting second-generation hybridisation involving exotic plantation species and native eucalypt populations will therefore be unreliable, and identifies a need for preventing second-generation hybrids from establish in the wild. The current work, nevertheless, provides further demonstration of the effectiveness of morphological identification of F1 hybrids. The easy recognition of F1 hybrids will be useful in identifying sites and species at risk of exotic gene flow and enable the development of weeding programs that focus on removing exotic hybrids in the wild.


Tree Genetics & Genomes | 2013

Genetic analysis of the near-infrared spectral phenome of a global Eucalyptus species

Julianne M. O’Reilly-Wapstra; Jules S. Freeman; Rc Barbour; Re Vaillancourt; Bm Potts

Understanding the genetic-based variability in plant phytochemical compounds provides insight into the evolutionary and ecological processes affecting those traits. In some cases, it is an advantage to quantify the holistic phytochemical profile of a sample rather than focus on individual compounds of known interest. Near-infrared (NIR) reflectance spectroscopy provides a means to rapidly characterise the holistic physicochemical profile of biological materials (known as the spectral phenome). To date, most studies examining differences in the spectral phenome between groups and species have not been conducted in such a way as to enable the quantitative genetic basis of the variation in the spectral phenome to be determined. Here, we investigate the genetic-based variation in the spectral phenome of eucalypts focussing on comparisons at multiple scales of the genetic hierarchy using a tree species of global economic importance, Eucalyptus globulus. Using foliage collected from common-environment field trials we were able to use the spectral phenome to accurately differentiate advanced generation inter-specific hybrids and their parents and examine the pattern of inheritance of the holistic chemical profile. We also found intra-specific variability in the spectral phenome at the race, sub-race and family within race levels, and could identify clear genomic positions influencing the spectral phenome. We have used Eucalyptus as a test system to demonstrate the general approach of using the spectral phenome in genetic-based analyses, an approach that is readily transferrable to other plant systems.

Collaboration


Dive into the Rc Barbour's collaboration.

Top Co-Authors

Avatar

Bm Potts

University of Tasmania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ab Hingston

University of Tasmania

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge