Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rebeca Atencia is active.

Publication


Featured researches published by Rebeca Atencia.


Nature | 2012

The bonobo genome compared with the chimpanzee and human genomes

Kay Prüfer; Kasper Munch; Ines Hellmann; Keiko Akagi; Jason R. Miller; Brian Walenz; Sergey Koren; Granger Sutton; Chinnappa D. Kodira; Roger Winer; James Knight; James C. Mullikin; Stephen Meader; Chris P. Ponting; Gerton Lunter; Saneyuki Higashino; Asger Hobolth; Julien Y. Dutheil; Emre Karakoc; Can Alkan; Saba Sajjadian; Claudia Rita Catacchio; Mario Ventura; Tomas Marques-Bonet; Evan E. Eichler; Claudine André; Rebeca Atencia; Lawrence Mugisha; Jörg Junhold; Nick Patterson

Two African apes are the closest living relatives of humans: the chimpanzee (Pan troglodytes) and the bonobo (Pan paniscus). Although they are similar in many respects, bonobos and chimpanzees differ strikingly in key social and sexual behaviours, and for some of these traits they show more similarity with humans than with each other. Here we report the sequencing and assembly of the bonobo genome to study its evolutionary relationship with the chimpanzee and human genomes. We find that more than three per cent of the human genome is more closely related to either the bonobo or the chimpanzee genome than these are to each other. These regions allow various aspects of the ancestry of the two ape species to be reconstructed. In addition, many of the regions that overlap genes may eventually help us understand the genetic basis of phenotypes that humans share with one of the two apes to the exclusion of the other.


PLOS ONE | 2011

Bonobos fall within the genomic variation of chimpanzees

Anne Fischer; Kay Prüfer; Jeffrey M. Good; Michel Halbwax; Victor Wiebe; Claudine André; Rebeca Atencia; Lawrence Mugisha; Susan E. Ptak; Svante Pääbo

To gain insight into the patterns of genetic variation and evolutionary relationships within and between bonobos and chimpanzees, we sequenced 150,000 base pairs of nuclear DNA divided among 15 autosomal regions as well as the complete mitochondrial genomes from 20 bonobos and 58 chimpanzees. Except for western chimpanzees, we found poor genetic separation of chimpanzees based on sample locality. In contrast, bonobos consistently cluster together but fall as a group within the variation of chimpanzees for many of the regions. Thus, while chimpanzees retain genomic variation that predates bonobo-chimpanzee speciation, extensive lineage sorting has occurred within bonobos such that much of their genome traces its ancestry back to a single common ancestor that postdates their origin as a group separate from chimpanzees.


Journal of Human Evolution | 2009

Bonobos have a more human-like second-to-fourth finger length ratio (2D:4D) than chimpanzees: a hypothesized indication of lower prenatal androgens

Matthew H. McIntyre; Esther Herrmann; Victoria Wobber; Michel Halbwax; Crispin Mohamba; Nick de Sousa; Rebeca Atencia; Debby Cox; Brian Hare

The ratio of the second-to-fourth finger lengths (2D:4D) has been proposed as an indicator of prenatal sex differentiation. However, 2D:4D has not been studied in the closest living human relatives, chimpanzees (Pan troglodytes) and bonobos (Pan paniscus). We report the results from 79 chimpanzees and 39 bonobos of both sexes, including infants, juveniles, and adults. We observed the expected sex difference in 2D:4D, and substantially higher, more human-like, 2D:4D in bonobos than chimpanzees. Previous research indicates that sex differences in 2D:4D result from differences in prenatal sex hormone levels. We hypothesize that the species difference in 2D:4D between bonobos and chimpanzees suggests a possible role for early exposure to sex hormones in the development of behavioral differences between the two species.


Molecular Biology and Evolution | 2013

Comparative Population Genomics of the Ejaculate in Humans and the Great Apes

Jeffrey M. Good; Victor Wiebe; Frank W. Albert; Hernán A. Burbano; Martin Kircher; Richard E. Green; Michel Halbwax; Claudine André; Rebeca Atencia; Anne Fischer; Svante Pääbo

The rapid molecular evolution of reproductive genes is nearly ubiquitous across animals, yet the selective forces and functional targets underlying this divergence remain poorly understood. Humans and closely related species of great apes show strongly divergent mating systems, providing a powerful system to investigate the influence of sperm competition on the evolution of reproductive genes. This is complemented by detailed information on male reproductive biology and unparalleled genomic resources in humans. Here, we have used custom microarrays to capture and sequence 285 genes encoding proteins present in the ejaculate as well as 101 randomly selected control genes in 21 gorillas, 20 chimpanzees, 20 bonobos, and 20 humans. In total, we have generated >25× average genomic coverage per individual for over 1 million target base pairs. Our analyses indicate high levels of evolutionary constraint across much of the ejaculate combined with more rapid evolution of genes involved in immune defense and proteolysis. We do not find evidence for appreciably more positive selection along the lineage leading to bonobos and chimpanzees, although this would be predicted given more intense sperm competition in these species. Rather, the extent of positive and negative selection depended more on the effective population sizes of the species. Thus, general patterns of male reproductive protein evolution among apes and humans depend strongly on gene function but not on inferred differences in the intensity of sperm competition among extant species.


PLOS ONE | 2012

High Diversity at PRDM9 in Chimpanzees and Bonobos

Linn Fenna Groeneveld; Rebeca Atencia; Rosa M. Garriga; Linda Vigilant

Background The PRDM9 locus in mammals has increasingly attracted research attention due to its role in mediating chromosomal recombination and possible involvement in hybrid sterility and hence speciation processes. The aim of this study was to characterize sequence variation at the PRDM9 locus in a sample of our closest living relatives, the chimpanzees and bonobos. Methodology/Principal Findings PRDM9 contains a highly variable and repetitive zinc finger array. We amplified this domain using long-range PCR and determined the DNA sequences using conventional Sanger sequencing. From 17 chimpanzees representing three subspecies and five bonobos we obtained a total of 12 alleles differing at the nucleotide level. Based on a data set consisting of our data and recently published Pan PRDM9 sequences, we found that at the subspecies level, diversity levels did not differ among chimpanzee subspecies or between chimpanzee subspecies and bonobos. In contrast, the sample of chimpanzees harbors significantly more diversity at PRDM9 than samples of humans. Pan PRDM9 shows signs of rapid evolution including no alleles or ZnFs in common with humans as well as signals of positive selection in the residues responsible for DNA binding. Conclusions and Significance The high number of alleles specific to the genus Pan, signs of positive selection in the DNA binding residues, and reported lack of conservation of recombination hotspots between chimpanzees and humans suggest that PRDM9 could be active in hotspot recruitment in the genus Pan. Chimpanzees and bonobos are considered separate species and do not have overlapping ranges in the wild, making the presence of shared alleles at the amino acid level between the chimpanzee and bonobo species interesting in view of the hypothesis that PRDM9 plays a universal role in interspecific hybrid sterility.


Molecular Biology and Evolution | 2015

Long-Term Balancing Selection in LAD1 Maintains a Missense Trans-Species Polymorphism in Humans, Chimpanzees, and Bonobos

João C. Teixeira; Cesare de Filippo; Antje Weihmann; Juan R. Meneu; Fernando Racimo; Michael Dannemann; Birgit Nickel; Anne Fischer; Michel Halbwax; Claudine André; Rebeca Atencia; Matthias Meyer; Genís Parra; Svante Pääbo; Aida M. Andrés

Balancing selection maintains advantageous genetic and phenotypic diversity in populations. When selection acts for long evolutionary periods selected polymorphisms may survive species splits and segregate in present-day populations of different species. Here, we investigate the role of long-term balancing selection in the evolution of protein-coding sequences in the Homo-Pan clade. We sequenced the exome of 20 humans, 20 chimpanzees, and 20 bonobos and detected eight coding trans-species polymorphisms (trSNPs) that are shared among the three species and have segregated for approximately 14 My of independent evolution. Although the majority of these trSNPs were found in three genes of the major histocompatibility locus cluster, we also uncovered one coding trSNP (rs12088790) in the gene LAD1. All these trSNPs show clustering of sequences by allele rather than by species and also exhibit other signatures of long-term balancing selection, such as segregating at intermediate frequency and lying in a locus with high genetic diversity. Here, we focus on the trSNP in LAD1, a gene that encodes for Ladinin-1, a collagenous anchoring filament protein of basement membrane that is responsible for maintaining cohesion at the dermal-epidermal junction; the gene is also an autoantigen responsible for linear IgA disease. This trSNP results in a missense change (Leucine257Proline) and, besides altering the protein sequence, is associated with changes in gene expression of LAD1.


Genome Biology and Evolution | 2016

Multigenomic Delineation of Plasmodium Species of the Laverania Subgenus Infecting Wild-Living Chimpanzees and Gorillas

Weimin Liu; Sesh A. Sundararaman; Dorothy E. Loy; Gerald H. Learn; Yingying Li; Lindsey J. Plenderleith; Jean-Bosco N. Ndjango; Sheri Speede; Rebeca Atencia; Debby Cox; George M. Shaw; Ahidjo Ayouba; Martine Peeters; Julian C. Rayner; Beatrice H. Hahn; Paul M. Sharp

Plasmodium falciparum, the major cause of malaria morbidity and mortality worldwide, is only distantly related to other human malaria parasites and has thus been placed in a separate subgenus, termed Laverania. Parasites morphologically similar to P. falciparum have been identified in African apes, but only one other Laverania species, Plasmodium reichenowi from chimpanzees, has been formally described. Although recent studies have pointed to the existence of additional Laverania species, their precise number and host associations remain uncertain, primarily because of limited sampling and a paucity of parasite sequences other than from mitochondrial DNA. To address this, we used limiting dilution polymerase chain reaction to amplify additional parasite sequences from a large number of chimpanzee and gorilla blood and fecal samples collected at two sanctuaries and 30 field sites across equatorial Africa. Phylogenetic analyses of more than 2,000 new sequences derived from the mitochondrial, nuclear, and apicoplast genomes revealed six divergent and well-supported clades within the Laverania parasite group. Although two of these clades exhibited deep subdivisions in phylogenies estimated from organelle gene sequences, these sublineages were geographically defined and not present in trees from four unlinked nuclear loci. This greatly expanded sequence data set thus confirms six, and not seven or more, ape Laverania species, of which P. reichenowi, Plasmodium gaboni, and Plasmodium billcollinsi only infect chimpanzees, whereas Plasmodium praefalciparum, Plasmodium adleri, and Pladmodium blacklocki only infect gorillas. The new sequence data also confirm the P. praefalciparum origin of human P. falciparum.


PLOS ONE | 2015

First detection of an enterovirus C99 in a captive chimpanzee with acute flaccid paralysis, from the Tchimpounga chimpanzee rehabilitation center, Republic of Congo

Nicolas Berthet; Alexander N. Lukashev; Tobias Bleicker; Sebastian Brünink; Lucas Léger; Rebeca Atencia; Debby Cox; Christiane Bouchier; Patrick Durand; Céline Arnathau; Lionel Brazier; Joseph N. Fair; Bradley S. Schneider; Jan Felix Drexler; Franck Prugnolle; Christian Drosten; François Renaud; Eric Leroy; Virginie Rougeron

Enteroviruses, members of the Picornaviridae family, are ubiquitous viruses responsible for mild to severe infections in human populations around the world. In 2010 Pointe-Noire, Republic of Congo recorded an outbreak of acute flaccid paralysis (AFP) in the humans, caused by wild poliovirus type 1 (WPV1). One month later, in the Tchimpounga sanctuary near Pointe-Noire, a chimpanzee developed signs similar to AFP, with paralysis of the lower limbs. In the present work, we sought to identify the pathogen, including viral and bacterial agents, responsible for this illness. In order to identify the causative agent, we evaluated a fecal specimen by PCR and sequencing. A Human enterovirus C, specifically of the EV-C99 type was potentially responsible for the illness in this chimpanzee. To rule out other possible causative agents, we also investigated the bacteriome and the virome using next generation sequencing. The majority of bacterial reads obtained belonged to commensal bacteria (95%), and the mammalian virus reads matched mainly with viruses of the Picornaviridae family (99%), in which enteroviruses were the most abundant (99.6%). This study thus reports the first identification of a chimpanzee presenting AFP most likely caused by an enterovirus and demonstrates once again the cross-species transmission of a human pathogen to an ape.


PLOS ONE | 2015

Lineage-Specific Changes in Biomarkers in Great Apes and Humans

Claudius Ronke; Michael Dannemann; Michel Halbwax; Anne Fischer; Christin Helmschrodt; Mathias Brügel; Claudine André; Rebeca Atencia; Lawrence Mugisha; Markus Scholz; Uta Ceglarek; Joachim Thiery; Svante Pääbo; Kay Prüfer; Janet Kelso

Although human biomedical and physiological information is readily available, such information for great apes is limited. We analyzed clinical chemical biomarkers in serum samples from 277 wild- and captive-born great apes and from 312 healthy human volunteers as well as from 20 rhesus macaques. For each individual, we determined a maximum of 33 markers of heart, liver, kidney, thyroid and pancreas function, hemoglobin and lipid metabolism and one marker of inflammation. We identified biomarkers that show differences between humans and the great apes in their average level or activity. Using the rhesus macaques as an outgroup, we identified human-specific differences in the levels of bilirubin, cholinesterase and lactate dehydrogenase, and bonobo-specific differences in the level of apolipoprotein A-I. For the remaining twenty-nine biomarkers there was no evidence for lineage-specific differences. In fact, we find that many biomarkers show differences between individuals of the same species in different environments. Of the four lineage-specific biomarkers, only bilirubin showed no differences between wild- and captive-born great apes. We show that the major factor explaining the human-specific difference in bilirubin levels may be genetic. There are human-specific changes in the sequence of the promoter and the protein-coding sequence of uridine diphosphoglucuronosyltransferase 1 (UGT1A1), the enzyme that transforms bilirubin and toxic plant compounds into water-soluble, excretable metabolites. Experimental evidence that UGT1A1 is down-regulated in the human liver suggests that changes in the promoter may be responsible for the human-specific increase in bilirubin. We speculate that since cooking reduces toxic plant compounds, consumption of cooked foods, which is specific to humans, may have resulted in relaxed constraint on UGT1A1 which has in turn led to higher serum levels of bilirubin in humans.


Mbio | 2018

Allometry and Ecology of the Bilaterian Gut Microbiome.

Scott Sherrill-Mix; Kevin McCormick; Abigail Lauder; Aubrey Bailey; Laurie Zimmerman; Yingying Li; Jean-Bosco N. Django; Paco Bertolani; Christelle Colin; John Hart; Terese B. Hart; Alexander V. Georgiev; Crickette M. Sanz; David Morgan; Rebeca Atencia; Debby Cox; Martin N. Muller; Volker Sommer; Alex K. Piel; Fiona A. Stewart; Sheri Speede; Joe Roman; Gary D. Wu; Josh Taylor; Rudolf P. Bohm; Heather Marshall Rose; John K. Carlson; Deus Mjungu; Paul S. Schmidt; Celeste Gaughan

ABSTRACT Classical ecology provides principles for construction and function of biological communities, but to what extent these apply to the animal-associated microbiota is just beginning to be assessed. Here, we investigated the influence of several well-known ecological principles on animal-associated microbiota by characterizing gut microbial specimens from bilaterally symmetrical animals (Bilateria) ranging from flies to whales. A rigorously vetted sample set containing 265 specimens from 64 species was assembled. Bacterial lineages were characterized by 16S rRNA gene sequencing. Previously published samples were also compared, allowing analysis of over 1,098 samples in total. A restricted number of bacterial phyla was found to account for the great majority of gut colonists. Gut microbial composition was associated with host phylogeny and diet. We identified numerous gut bacterial 16S rRNA gene sequences that diverged deeply from previously studied taxa, identifying opportunities to discover new bacterial types. The number of bacterial lineages per gut sample was positively associated with animal mass, paralleling known species-area relationships from island biogeography and implicating body size as a determinant of community stability and niche complexity. Samples from larger animals harbored greater numbers of anaerobic communities, specifying a mechanism for generating more-complex microbial environments. Predictions for species/abundance relationships from models of neutral colonization did not match the data set, pointing to alternative mechanisms such as selection of specific colonists by environmental niche. Taken together, the data suggest that niche complexity increases with gut size and that niche selection forces dominate gut community construction. IMPORTANCE The intestinal microbiome of animals is essential for health, contributing to digestion of foods, proper immune development, inhibition of pathogen colonization, and catabolism of xenobiotic compounds. How these communities assemble and persist is just beginning to be investigated. Here we interrogated a set of gut samples from a wide range of animals to investigate the roles of selection and random processes in microbial community construction. We show that the numbers of bacterial species increased with the weight of host organisms, paralleling findings from studies of island biogeography. Communities in larger organisms tended to be more anaerobic, suggesting one mechanism for niche diversification. Nonselective processes enable specific predictions for community structure, but our samples did not match the predictions of the neutral model. Thus, these findings highlight the importance of niche selection in community construction and suggest mechanisms of niche diversification. The intestinal microbiome of animals is essential for health, contributing to digestion of foods, proper immune development, inhibition of pathogen colonization, and catabolism of xenobiotic compounds. How these communities assemble and persist is just beginning to be investigated. Here we interrogated a set of gut samples from a wide range of animals to investigate the roles of selection and random processes in microbial community construction. We show that the numbers of bacterial species increased with the weight of host organisms, paralleling findings from studies of island biogeography. Communities in larger organisms tended to be more anaerobic, suggesting one mechanism for niche diversification. Nonselective processes enable specific predictions for community structure, but our samples did not match the predictions of the neutral model. Thus, these findings highlight the importance of niche selection in community construction and suggest mechanisms of niche diversification.

Collaboration


Dive into the Rebeca Atencia's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Debby Cox

Jane Goodall Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yingying Li

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Aimee L. Drane

Cardiff Metropolitan University

View shared research outputs
Researchain Logo
Decentralizing Knowledge