Rebeca Blázquez
Ciber
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rebeca Blázquez.
Frontiers in Immunology | 2014
Rebeca Blázquez; Francisco M. Sánchez-Margallo; Olga de la Rosa; Wilfried Dalemans; Verónica Ãlvarez; Raquel Tarazona; Javier G. Casado
In the recent years, it has been demonstrated that the biological activity of mesenchymal stem cells (MSCs) is mediated through the release of paracrine factors. Many of these factors are released into exosomes, which are small membranous vesicles that participate in cell–cell communication. Exosomes from MSCs are thought to have similar functions to MSCs such as repairing and regeneration of damaged tissue, but little is known about the immunomodulatory effect of these vesicles. Based on an extensive bibliography where the immunomodulatory capacity of MSCs has been demonstrated, here we hypothesized that released exosomes from MSCs may have an immunomodulatory role on the differentiation, activation and function of different lymphocyte subsets. According to this hypothesis, in vitro experiments were performed to characterize the immunomodulatory effect of human adipose MSCs derived exosomes (exo-hASCs) on in vitro stimulated T cells. The phenotypic characterization of cytotoxic and helper T cells (activation and differentiation markers) together with functional assays (proliferation and IFN-γ production) demonstrated that exo-hASCs exerted an inhibitory effect in the differentiation and activation of T cells as well as a reduced T cell proliferation and IFN-γ release on in vitro stimulated cells. In summary, here we demonstrate that MSCs-derived exosomes are a cell-derived product that could be considered as a therapeutic agent for the treatment of inflammation-related diseases.
Molecular Pharmaceutics | 2015
Ane Garate; Jesús Ciriza; Javier G. Casado; Rebeca Blázquez; José Luis Pedraz; Gorka Orive; Rosa María Hernández
The combination of mesenchymal stem cells (MSCs) and biomimetic matrices for cell-based therapies has led to enormous advances, including the field of cell microencapsulation technology. In the present work, we have evaluated the potential of genetically modified MSCs from mice bone marrow, D1-MSCs, immobilized in alginate microcapsules with different RGD (Arg-Gly-Asp) densities. Results demonstrated that the microcapsules represent a suitable platform for D1-MSC encapsulation since cell immobilization into alginate matrices does not affect their main characteristics. The in vitro study showed a higher activity of D1-MSCs when they are immobilized in RGD-modified alginate microcapsules, obtaining the highest therapeutic factor secretion with low and intermediate densities of the bioactive molecule. In addition, the inclusion of RGD increased the differentiation potential of immobilized cells upon specific induction. However, subcutaneous implantation did not induce differentiation of D1-MSCs toward any lineage remaining at an undifferentiated state in vivo.
Journal of Translational Medicine | 2015
Verónica Crisóstomo; Claudia Báez-Díaz; Juan Maestre; Monica Garcia-Lindo; Fei Sun; Javier G. Casado; Rebeca Blázquez; Jose Luis Abad; Itziar Palacios; Luis Rodriguez-Borlado; Francisco M. Sánchez-Margallo
BackgroundThe optimal timing of cardiac stem cells administration is still unclear. We assessed the safety of same-day and delayed (one week) delivery and the possible influence of the timing on the therapeutic outcomes of allogeneic porcine cardiac stem cells administration after acute myocardial infarction in a closed-chest ischemia-reperfusion model.MethodsFemale swine surviving 90 min occlusion of the mid left anterior descending coronary artery received an intracoronary injection of 25x106 porcine cardiac stem cells either two hours (n = 5, D0) or 7 days (n = 6, D7) after reperfusion. Controls received intracoronary injection of vehicle on day 7 (n = 6, CON). Safety was defined in terms of absence of major cardiac events, changes to the ECG during injection, post-administration coronary flow assessed using the TIMI scale and cardiac troponin I determination after the intervention. Cardiac Magnetic Resonance was performed for morphological and functional assessment prior to infarction, before injection (D7 and CON groups only), at one and 10 weeks. Samples were taken from the infarct and transition areas for pathological examination.ResultsNo major adverse cardiac events were seen during injection in any group. Animals receiving the therapy on the same day of infarction (D0 group) showed mild transient ST changes during injection (n = 4) and, in one case, slightly compromised coronary flow (TIMI 2). Cardiac function parameters and infarct sizes were not significantly different between groups, with a trend towards higher ejection fraction in the treated groups. Ventricular volumes indexed to body surface area increased over time in control animals, and decreased by the end of the study in animals receiving the therapy, significantly so when comparing End Diastolic Volume between CON and D7 groups (CON: 121.70 ml/m2 ± 26.09 ml/m2, D7: 98.71 ml/m2 ± 8.30 ml/m2, p = 0.037). The treated groups showed less organization of the collagenous scar, and a significantly (p = 0.019) higher amount of larger, more mature vessels at the infarct border.ConclusionsThe intracoronary injection of 25x106 allogeneic cardiac stem cells is generally safe, both early and 7 days after experimental infarction, and alleviates myocardial dysfunction, with a greater limitation of left ventricular remodeling when performed at one week.
PLOS ONE | 2016
Rebeca Blázquez; Francisco M. Sánchez-Margallo; Verónica Crisóstomo; Claudia Báez; Juan Maestre; Verónica Álvarez; Javier G. Casado
Introduction The intrapericardial delivery has been defined as an efficient method for pharmacological agent delivery. Here we hypothesize that intrapericardial administration of cardiosphere-derived cells (CDCs) may have an immunomodulatory effect providing an optimal microenvironment for promoting cardiac repair. To our knowledge, this is the first report studying the effects of CDCs for myocardial repair using the intrapericardial delivery route. Material and Methods CDCs lines were isolated, expanded and characterized by flow cytometry and PCR. Their differentiation ability was determined using specific culture media and differential staining. 300,000 CDCs/kg were injected into the pericardial space of a swine myocardial infarcted model. Magnetic resonance imaging, biochemical analysis of pericardial fluid and plasma, cytokine measurements and flow cytometry analysis were performed. Results Our results showed that, phenotype and differentiation behavior of porcine CDCs were equivalent to previously described CDCs. Moreover, the intrapericardial administration of CDCs fulfilled the safety aspects as non-adverse effects were reported. Finally, the phenotypes of resident lymphocytes and TH1 cytokines in the pericardial fluid were significantly altered after CDCs administration. Conclusions The pericardial fluid could be considered as a safe and optimal vehicle for CDCs administration. The observed changes in the studied immunological parameters could exert a modulation in the inflammatory environment of infarcted hearts, indirectly benefiting the endogenous cardiac repair.
PLOS ONE | 2015
Rebeca Blázquez; Francisco M. Sánchez-Margallo; Verónica Crisóstomo; Claudia Báez; Juan Maestre; Monica Garcia-Lindo; Alejandra Usón; Verónica Álvarez; Javier G. Casado
The appropriate administration route for cardiovascular cell therapy is essential to ensure the viability, proliferative potential, homing capacity and implantation of transferred cells. At the present, the intrapericardial administration of pharmacological agents is considered an efficient method for the treatment of cardiovascular diseases. However, only a few reports have addressed the question whether the intrapericardial delivery of Mesenchymal Stem Cells (MSCs) could be an optimal administration route. This work firstly aimed to analyze the pericardial fluid as a cell-delivery vehicle. Moreover, the in vivo biodistribution pattern of intrapericardially administered MSCs was evaluated in a clinically relevant large animal model. Our in vitro results firstly showed that, MSCs viability, proliferative behavior and phenotypic profile were unaffected by exposure to pericardial fluid. Secondly, in vivo cell tracking by magnetic resonance imaging, histological examination and Y-chromosome amplification clearly demonstrated the presence of MSCs in pericardium, ventricles (left and right) and atrium (left and right) when MSCs were administered into the pericardial space. In conclusion, here we demonstrate that pericardial fluid is a suitable vehicle for MSCs and intrapericardial route provides an optimal retention and implantation of MSCs.
Wound Repair and Regeneration | 2014
Javier G. Casado; Rebeca Blázquez; Inmaculada Jorge; Verónica Álvarez; Guadalupe Gómez-Mauricio; Mariano Ortega-Muñoz; Jesús Vázquez; Francisco M. Sánchez-Margallo
Sutures are commonly used for surgical procedures and new sutures are being developed to improve wound healing. In the past decade, it has been extensively shown that mesenchymal stem cells (MSCs) have a wound healing potential. To benefit the overall wound healing process, we aimed to analyze the usage of pretreated sutures for improving the implantation of MSCs in the tissues. Our results firstly showed that suture pretreatments with gelatin, poly‐L‐lysine, and NaOH improved the adhesive strength of MSCs to sutures. These cells remained surrounding the sutured tissue and no significant phenotypic changes were found in those cells cultured onto pretreated sutures. In vivo experiments showed that the implantation of MSCs by suturing increases the collagen content in the sutured tissue. Moreover, proteomics analysis of secreted proteins showed that collagen alpha‐1(I) chain was the most abundant collagen found. To our knowledge, this is the first report that aimed to improve the implantation of MSCs in tissue by suture pretreatments. Moreover, in vivo experiments suggest that MSC‐coated sutures may enhance wound healing and tissue remodeling through the release of different collagen types being applicable for those patients that tend to have difficulty healing.
Expert Review of Cardiovascular Therapy | 2015
Verónica Crisóstomo; Javier G. Casado; Claudia Báez-Díaz; Rebeca Blázquez; Francisco M. Sánchez-Margallo
Myocardial infarction, even after reperfusion, leads to significant loss of cardiomyocytes and to a maladaptive remodeling process. A possibility gaining attention as an ancillary therapy is the use of cardiac-derived cell products, with early stage clinical trials reporting highly promising results with autologous cells. However, an autologous therapy presents limitations, such as timeframe of therapy, cell processing and culture costs, risks posed to the patient by the tissue harvesting, etc. Allogeneic cells may represent an answer, providing an off-the-shelf product that could be used in the acute stage, before the myocardial damage is irrevocable. To date, allogeneic cardiac-derived cell products are being tested extensively, but the questions of their immunogenicity (and therefore safety), efficacy, cost–effectiveness, etc. are only partially elucidated. Small Phase I/II clinical trials (ALLSTAR, CAREMI) have started and their results will shed the much needed light on the feasibility and safety of a much needed therapy.
Frontiers in Veterinary Science | 2017
Javier G. Casado; Rebeca Blázquez; Francisco Javier Vela; Verónica Álvarez; Raquel Tarazona; Francisco M. Sánchez-Margallo
Synovitis is an inflammatory process associated with pain, disability, and discomfort, which is usually treated with anti-inflammatory drugs or biological agents. Mesenchymal stem cells (MSCs) have been also successfully used in the treatment of inflammatory-related diseases such as synovitis or arthritis. In the last years, the exosomes derived from MSCs have become a promising tool for the treatment of inflammatory-related diseases and their therapeutic effect is thought to be mediated (at least in part) by their immunomodulatory potential. In this work, we aimed to evaluate the anti-inflammatory effect of these exosomes in an antigen-induced synovitis animal model. To our knowledge, this is the first report where exosomes derived from MSCs have been evaluated in an animal model of synovitis. Our results demonstrated a decrease of synovial lymphocytes together with a downregulation of TNF-α transcripts in those exosome-treated joints. These results support the immunomodulatory effect of these exosomes and point out that they may represent a promising therapeutic option for the treatment of synovitis.
PLOS ONE | 2018
Rebeca Blázquez; Francisco M. Sánchez-Margallo; Verónica Álvarez; Elvira Matilla; Nuria Hernández; Federica Marinaro; María Gómez-Serrano; Inmaculada Jorge; Javier G. Casado; Beatriz Macías-García
Endometrial Mesenchymal Stromal Cells (endMSCs) are multipotent cells with immunomodulatory and pro-regenerative activity which is mainly mediated by a paracrine effect. The exosomes released by MSCs have become a promising therapeutic tool for the treatment of immune-mediated diseases. More specifically, extracellular vesicles derived from endMSCs (EV-endMSCs) have demonstrated a cardioprotective effect through the release of anti-apoptotic and pro-angiogenic factors. Here we hypothesize that EV-endMSCs may be used as a co-adjuvant to improve in vitro fertilization outcomes and embryo quality. Firstly, endMSCs and EV-endMSCs were isolated and phenotypically characterized for in vitro assays. Then, in vitro studies were performed on murine embryos co-cultured with EV-endMSCs at different concentrations. Our results firstly demonstrated a significant increase on the total blastomere count of expanded murine blastocysts. Moreover, EV-endMSCs triggered the release of pro-angiogenic molecules from embryos demonstrating an EV-endMSCs concentration-dependent increase of VEGF and PDGF-AA. The release of VEGF and PDGF-AA by the embryos may indicate that the beneficial effect of EV-endMSCs could be mediating not only an increase in the blastocyst’s total cell number, but also may promote endometrial angiogenesis, vascularization, differentiation and tissue remodeling. In summary, these results could be relevant for assisted reproduction being the first report describing the beneficial effect of human EV-endMSCs on embryo development.
Acta Biomaterialia | 2018
Rebeca Blázquez; Francisco M. Sánchez-Margallo; Verónica Álvarez; Alejandra Usón; Federica Marinaro; Javier G. Casado
Surgical meshes are effective and frequently used to reinforce soft tissues. Fibrin glue (FG) has been widely used for mesh fixation and is also considered an optimal vehicle for stem cell delivery. The aim of this preclinical study was to evaluate the therapeutic effect of MSCs and their exosomes combined with FG for the treatment of incisional hernia. A murine incisional hernia model was used to implant surgical meshes and different treatments with FG, MSCs and exo-MSCs were applied. The implanted meshes were evaluated at day 7 by anatomopathology, cellular analysis of infiltrating leukocytes and gene expression analysis of TH1/TH2 cytokines, MMPs, TIMPs and collagens. Our results demonstrated a significant increase of anti-inflammatory M2 macrophages and TH2 cytokines when MSCs or exo-MSCs were used. Moreover, the analysis of MMPs, TIMPs and collagen exerted significant differences in the extracellular matrix and in the remodeling process. Our in vivo study suggests that the fixation of surgical meshes with FG and MSCs or exo-MSCs will have a beneficial effect for the treatment of incisional hernia in terms of improved outcomes of damaged tissue, and especially, in the modulation of inflammatory responses towards a less aggressive and pro-regenerative profile. STATEMENT OF SIGNIFICANCE The implantation of surgical meshes is the standard procedure to reinforce tissue defects such as hernias. However, an exacerbated and persistent inflammatory response secondary to this implantation is frequently observed, leading to a strong discomfort and chronic pain in the patients. In many cases, an additional surgical intervention is needed to remove the mesh. This study shows that mesenchymal stem cells and their exosomes, combined with a fibrin sealant, can be used for the successful fixation of these meshes. This new therapeutic approach, assayed in a murine model of incisional hernia, favors the modulation of the inflammatory response towards a less aggressive and pro-regenerative profile.