Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rebeca Bocanegra is active.

Publication


Featured researches published by Rebeca Bocanegra.


Biomacromolecules | 2010

Dendrimers as Potential Inhibitors of the Dimerization of the Capsid Protein of HIV-1

Rosa Domènech; Olga Abian; Rebeca Bocanegra; Juan Correa; Ana Sousa-Herves; Ricardo Riguera; Mauricio G. Mateu; Eduardo Fernandez-Megia; Adrián Velázquez-Campoy; José L. Neira

Assembly of the mature human immunodeficiency virus type 1 capsid involves the oligomerization of the capsid protein, CA. The C-terminal domain of CA, CTD, participates both in the formation of CA hexamers and in the joining of hexamers through homodimerization. Intact CA and the isolated CTD are able to homodimerize in solution with similar affinity (dissociation constant in the order of 10 microM); CTD homodimerization involves mainly an alpha-helical region. In this work, we show that first-generation gallic acid-triethylene glycol (GATG) dendrimers bind to CTD. The binding region is mainly formed by residues involved in the homodimerization interface of CTD. The dissociation constant of the dendrimer-CTD complexes is in the range of micromolar, as shown by ITC. Further, the affinity for CTD of some of the dendrimers is similar to that of synthetic peptides capable of binding to the dimerization region, and it is also similar to the homodimerization affinity of both CTD and CA. Moreover, one of the dendrimers, with a relatively large hydrophobic moiety at the dendritic branching (a benzoate), was able to hamper the assembly in vitro of the human immunodeficiency virus capsid. These results open the possibility of considering dendrimers as lead compounds for the development of antihuman immunodeficiency virus drugs targeting capsid assembly.


Virus Research | 2012

Molecular recognition in the human immunodeficiency virus capsid and antiviral design

Rebeca Bocanegra; Alicia Rodríguez-Huete; Miguel A. Fuertes; Marta del Álamo; Mauricio G. Mateu

Many compounds able to interfere with HIV-1 infection have been identified; some 25 of them have been approved for clinical use. Current anti-HIV-1 therapy involves the use of drug cocktails, which reduces the probability of virus escape. However, many issues remain, including drug toxicity and the emergence of drug-resistant mutant viruses, even in treated patients. Therefore, there is a constant need for the development of new anti-HIV-1 agents targeting other molecules in the viral cycle. The capsid protein CA plays a key role in many molecular recognition events during HIV-1 morphogenesis and uncoating, and is eliciting increased interest as a promising target for antiviral intervention. This article provides a structure-based, integrated review on the CA-binding small molecules and peptides identified to date, and their effects on virus capsid assembly and stability, with emphasis on recent results not previously reviewed. As a complement, we present novel experimental results on the development and proof-of-concept application of a combinatorial approach to study molecular recognition in CA and its inhibition by peptide compounds.


PLOS ONE | 2011

Rationally Designed Interfacial Peptides Are Efficient In Vitro Inhibitors of HIV-1 Capsid Assembly with Antiviral Activity

Rebeca Bocanegra; María Nevot; Rosa Domènech; Inmaculada López; Olga Abian; Alicia Rodríguez-Huete; Claudio N. Cavasotto; Adrián Velázquez-Campoy; Javier Gómez; Miguel Angel Martínez; José L. Neira; Mauricio G. Mateu

Virus capsid assembly constitutes an attractive target for the development of antiviral therapies; a few experimental inhibitors of this process for HIV-1 and other viruses have been identified by screening compounds or by selection from chemical libraries. As a different, novel approach we have undertaken the rational design of peptides that could act as competitive assembly inhibitors by mimicking capsid structural elements involved in intersubunit interfaces. Several discrete interfaces involved in formation of the mature HIV-1 capsid through polymerization of the capsid protein CA were targeted. We had previously designed a peptide, CAC1, that represents CA helix 9 (a major part of the dimerization interface) and binds the CA C-terminal domain in solution. Here we have mapped the binding site of CAC1, and shown that it substantially overlaps with the CA dimerization interface. We have also rationally modified CAC1 to increase its solubility and CA-binding affinity, and designed four additional peptides that represent CA helical segments involved in other CA interfaces. We found that peptides CAC1, its derivative CAC1M, and H8 (representing CA helix 8) were able to efficiently inhibit the in vitro assembly of the mature HIV-1 capsid. Cocktails of several peptides, including CAC1 or CAC1M plus H8 or CAI (a previously discovered inhibitor of CA polymerization), or CAC1M+H8+CAI, also abolished capsid assembly, even when every peptide was used at lower, sub-inhibitory doses. To provide a preliminary proof that these designed capsid assembly inhibitors could eventually serve as lead compounds for development of anti-HIV-1 agents, they were transported into cultured cells using a cell-penetrating peptide, and tested for antiviral activity. Peptide cocktails that drastically inhibited capsid assembly in vitro were also able to efficiently inhibit HIV-1 infection ex vivo. This study validates a novel, entirely rational approach for the design of capsid assembly interfacial inhibitors that show antiviral activity.


Journal of Biological Chemistry | 2015

Conformational Changes Leading To T7 DNA Delivery Upon Interaction With The Bacterial Receptor

Verónica A. González-García; Mar Pulido-Cid; Carmela Garcia-Doval; Rebeca Bocanegra; Mark J. van Raaij; Jaime Martín-Benito; Ana Cuervo; José L. Carrascosa

Background: T7 bacteriophage infects E. coli bacteria; during this process, the tail recognizes the bacterial receptor. Results: Interactions of T7 with rough LPS trigger DNA delivery by promoting changes in the tail tube. Conclusion: E. coli rough LPS act as the receptor in vitro for T7 bacteriophage. Significance: Biotechnological application of bacteriophages as antibacterial agents demands detailed molecular knowledge of bacteriophage infection. The majority of bacteriophages protect their genetic material by packaging the nucleic acid in concentric layers to an almost crystalline concentration inside protein shells (capsid). This highly condensed genome also has to be efficiently injected into the host bacterium in a process named ejection. Most phages use a specialized complex (often a tail) to deliver the genome without disrupting cell integrity. Bacteriophage T7 belongs to the Podoviridae family and has a short, non-contractile tail formed by a tubular structure surrounded by fibers. Here we characterize the kinetics and structure of bacteriophage T7 DNA delivery process. We show that T7 recognizes lipopolysaccharides (LPS) from Escherichia coli rough strains through the fibers. Rough LPS acts as the main phage receptor and drives DNA ejection in vitro. The structural characterization of the phage tail after ejection using cryo-electron microscopy (cryo-EM) and single particle reconstruction methods revealed the major conformational changes needed for DNA delivery at low resolution. Interaction with the receptor causes fiber tilting and opening of the internal tail channel by untwisting the nozzle domain, allowing release of DNA and probably of the internal head proteins.


Chemical Communications | 2013

Mechanical unfolding of long human telomeric RNA (TERRA)

Miguel Garavís; Rebeca Bocanegra; Elías Herrero-Galán; Carlos Villaseca González; Alfredo Villasante; J. Ricardo Arias-Gonzalez

We report the first single molecule investigation of TERRA molecules. By using optical-tweezers and other biophysical techniques, we have found that long RNA constructions of up to 25 GGGUUA repeats form higher order structures comprised of single parallel G-quadruplex blocks, which unfold at lower forces than their DNA counterparts.


Biophysical Journal | 2011

Effects of Macromolecular Crowding on the Inhibition of Virus Assembly and Virus-Cell Receptor Recognition

Verónica Rincón; Rebeca Bocanegra; Alicia Rodríguez-Huete; Germán Rivas; Mauricio G. Mateu

Biological fluids contain a very high total concentration of macromolecules that leads to volume exclusion by one molecule to another. Theory and experiment have shown that this condition, termed macromolecular crowding, can have significant effects on molecular recognition. However, the influence of molecular crowding on recognition events involving virus particles, and their inhibition by antiviral compounds, is virtually unexplored. Among these processes, capsid self-assembly during viral morphogenesis and capsid-cell receptor recognition during virus entry into cells are receiving increasing attention as targets for the development of new antiviral drugs. In this study, we have analyzed the effect of macromolecular crowding on the inhibition of these two processes by peptides. Macromolecular crowding led to a significant reduction in the inhibitory activity of: 1), a capsid-binding peptide and a small capsid protein domain that interfere with assembly of the human immunodeficiency virus capsid, and 2), a RGD-containing peptide able to block the interaction between foot-and-mouth disease virus and receptor molecules on the host cell membrane (in this case, the effect was dependent on the conditions used). The results, discussed in the light of macromolecular crowding theory, are relevant for a quantitative understanding of molecular recognition processes during virus infection and its inhibition.


Biophysical Journal | 2013

Association equilibrium of the HIV-1 capsid protein in a crowded medium reveals that hexamerization during capsid assembly requires a functional C-domain dimerization interface.

Rebeca Bocanegra; Carlos Alfonso; Alicia Rodríguez-Huete; Miguel A. Fuertes; Mercedes Jiménez; Germán Rivas; Mauricio G. Mateu

Polymerization of the intact capsid protein (CA) of HIV-1 into mature capsidlike particles at physiological ionic strength in vitro requires macromolecularly crowded conditions that approach those inside the virion, where the mature capsid is assembled in vivo. The capsid is organized as a hexameric lattice. CA subunits in each hexamer are connected through interfaces that involve the CA N-terminal domain (NTD); pairs of CA subunits belonging to different hexamers are connected through a different interface that involves the C-terminal domain (CTD). At physiological ionic strength in noncrowded conditions, CA subunits homodimerize through this CTD-CTD interface, but do not hexamerize through the other interfaces (those involving the NTD). Here we have investigated whether macromolecular crowding conditions are able to promote hexamerization of the isolated NTD and/or full-length CA (with an inactive CTD-CTD interface to prevent polymerization). The oligomerization state of the proteins was determined using analytical ultracentrifugation in the absence or presence of high concentrations of an inert macromolecular crowding agent. Under the same conditions that promoted efficient assembly of intact CA dimers, neither NTD nor CA with an inactive CTD-CTD interface showed any tendency to form hexamers or any other oligomer. This inability to hexamerize was observed even in macromolecularly crowded conditions. The results indicate that a functional CTD-CTD interface is strictly required for hexamerization of HIV-1 CA through the other interfaces. Together with previous results, these observations suggest that establishment of NTD-CTD interactions involved in CA hexamerization during mature HIV-1 capsid assembly requires a homodimerization-dependent conformational switching of CTD.


Biomacromolecules | 2011

Larger Helical Populations in Peptides Derived from the Dimerization Helix of the Capsid Protein of HIV-1 Results in Peptide Binding toward Regions Other than the “Hotspot” Interface

Rosa Domènech; Rebeca Bocanegra; Rosario González-Muñiz; Javier Gómez; Mauricio G. Mateu; José L. Neira

The C-terminal domain (CTD) of the capsid protein (CA) of HIV-1 participates both in the formation of CA hexamers and in the joining of hexamers through homodimerization to form the viral capsid. Intact CA and the CTD are able to homodimerize with similar affinity (~15 μM); CTD homodimerization involves mainly an α-helical region. We have designed peptides derived from that helix with predicted higher helical propensities than the wild-type sequence while keeping residues important for dimerization. These peptides showed a higher helicity than that of the wild-type peptide, although not as high as theoretically predicted, and proved to be able to self-associate with apparent affinities similar to that of the whole CTD. However, binding to CTD mainly occurs at the last helical region of the protein. Accordingly, most of those peptides are unable to inhibit CA polymerization in vitro. Therefore, there is a subtle tuning between monomer-monomer interactions important for CTD dimerization and the maximal helical content achieved by the wild-type sequence of the interface.


Biochimica et Biophysica Acta | 2011

The isolated major homology region of the HIV capsid protein is mainly unfolded in solution and binds to the intact protein.

Rosa Domènech; Rebeca Bocanegra; Adrián Velázquez-Campoy; José L. Neira

Assembly of the mature human immunodeficiency virus type 1 (HIV-1) capsid involves the oligomerization of the capsid protein, CA. During retroviral maturation, the CA protein undergoes structural changes and forms exclusive intermolecular interfaces in the mature capsid shell, different from those in the immature precursor. The most conserved region of CA, the major homology region (MHR), is located in the C-terminal domain of CA (CTD). The MHR is involved in both immature and mature virus assembly; however, its exact function during both assembly stages is unknown. To test its conformational preferences and to provide clues on its role during CA assembly, we have used a minimalist approach by designing a peptide comprising the whole MHR (MHRpep, residues Asp152 to Ala174). Isolated MHRpep is mainly unfolded in aqueous solution, with residual structure at its C terminus. MHRpep binds to monomeric CTD with an affinity of ~30μM (as shown by fluorescence and ITC); the CTD binding region comprises residues belonging to α-helices 10 and 11. In the immature virus capsid, the MHR and α-helix 11 regions of two CTD dimers also interact [Briggs JAG, Riches JD, Glass B, Baratonova V, Zanetti G and Kräusslich H-G (2009) Proc. Natl. Acad. Sci. USA 106, 11090-11095]. These results can be considered a proof-of-concept that the conformational preferences and binding features of isolated peptides derived from virus proteins could be used to mimic early stages of virus assembly.


Biophysical Journal | 2015

Biophysical Analysis of the MHR Motif in Folding and Domain Swapping of the HIV Capsid Protein C-Terminal Domain

Rebeca Bocanegra; Miguel A. Fuertes; Alicia Rodríguez-Huete; José L. Neira; Mauricio G. Mateu

Infection by human immunodeficiency virus (HIV) depends on the function, in virion morphogenesis and other stages of the viral cycle, of a highly conserved structural element, the major homology region (MHR), within the carboxyterminal domain (CTD) of the capsid protein. In a modified CTD dimer, MHR is swapped between monomers. While no evidence for MHR swapping has been provided by structural models of retroviral capsids, it is unknown whether it may occur transiently along the virus assembly pathway. Whatever the case, the MHR-swapped dimer does provide a novel target for the development of anti-HIV drugs based on the concept of trapping a nonnative capsid protein conformation. We have carried out a thermodynamic and kinetic characterization of the domain-swapped CTD dimer in solution. The analysis includes a dissection of the role of conserved MHR residues and other amino acids at the dimerization interface in CTD folding, stability, and dimerization by domain swapping. The results revealed some energetic hotspots at the domain-swapped interface. In addition, many MHR residues that are not in the protein hydrophobic core were nevertheless found to be critical for folding and stability of the CTD monomer, which may dramatically slow down the swapping reaction. Conservation of MHR residues in retroviruses did not correlate with their contribution to domain swapping, but it did correlate with their importance for stable CTD folding. Because folding is required for capsid protein function, this remarkable MHR-mediated conformational stabilization of CTD may help to explain the functional roles of MHR not only during immature capsid assembly but in other processes associated with retrovirus infection. This energetic dissection of the dimerization interface in MHR-swapped CTD may also facilitate the design of anti-HIV compounds that inhibit capsid assembly by conformational trapping of swapped CTD dimers.

Collaboration


Dive into the Rebeca Bocanegra's collaboration.

Top Co-Authors

Avatar

Mauricio G. Mateu

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Alicia Rodríguez-Huete

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Miguel A. Fuertes

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Ana Cuervo

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Germán Rivas

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Jaime Martín-Benito

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

José L. Carrascosa

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge