Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rebeca Vidal is active.

Publication


Featured researches published by Rebeca Vidal.


The Journal of Neuroscience | 2013

Reducing GABAA α5 Receptor-Mediated Inhibition Rescues Functional and Neuromorphological Deficits in a Mouse Model of Down Syndrome

Carmen Martínez-Cué; Paula Martínez; Noemí Rueda; Rebeca Vidal; Susana Truchuelo García; Verónica Vidal; Andrea Corrales; Juan A. Montero; Angel Pazos; Jesús Flórez; Rodolfo Gasser; Andrew William Thomas; Michael Honer; Frédéric Knoflach; José Luis Trejo; Joseph G. Wettstein; Maria-Clemencia Hernandez

Down syndrome (DS) is associated with neurological complications, including cognitive deficits that lead to impairment in intellectual functioning. Increased GABA-mediated inhibition has been proposed as a mechanism underlying deficient cognition in the Ts65Dn (TS) mouse model of DS. We show that chronic treatment of these mice with RO4938581 (3-bromo-10-(difluoromethyl)-9H-benzo[f]imidazo[1,5-a][1,2,4]triazolo[1,5-d][1,4]diazepine), a selective GABAA α5 negative allosteric modulator (NAM), rescued their deficits in spatial learning and memory, hippocampal synaptic plasticity, and adult neurogenesis. We also show that RO4938581 normalized the high density of GABAergic synapse markers in the molecular layer of the hippocampus of TS mice. In addition, RO4938581 treatment suppressed the hyperactivity observed in TS mice without inducing anxiety or altering their motor abilities. These data demonstrate that reducing GABAergic inhibition with RO4938581 can reverse functional and neuromorphological deficits of TS mice by facilitating brain plasticity and support the potential therapeutic use of selective GABAA α5 NAMs to treat cognitive dysfunction in DS.


Molecular Pharmacology | 2010

Long-term fluoxetine treatment modulates cannabinoid type 1 receptor-mediated inhibition of adenylyl cyclase in the rat prefrontal cortex through 5-hydroxytryptamine 1A receptor-dependent mechanisms.

Susana Mato; Rebeca Vidal; Elena Castro; Álvaro Díaz; Angel Pazos; Elsa M. Valdizán

Increasing data indicate that brain endocannabinoid system plays a role in the effects of antidepressant medications. Here we examined the effect of in vivo exposure to the selective serotonin uptake inhibitor fluoxetine on cannabinoid type 1 (CB1) receptor density and functionality in the rat prefrontal cortex (PFC) and cerebellum. Long-term treatment with fluoxetine (10 mg/kg/day) enhanced CB1 receptor inhibition of adenylyl cyclase (AC) in the PFC and reduced it in the cerebellum without altering receptor density and agonist stimulation of guanosine 5′-O-(3-[35S]thio) triphosphate ([35S]GTPγS) in either area. Analysis of [35S]GTPγS-labeled Gα subunits allowed for the detection of up-regulated CB1 receptor coupling to Gαi2, Gαi3 in the PFC, and reduced coupling to Gαi3 in the cerebellum of fluoxetine-treated rats. Concomitant administration of the 5-HT1A receptor antagonist N-[2-[4- (2-methoxyphenyl)-1-piperazinyl]ethyl]-N-2-pyridinylcyclohexanecarboxamide maleate (WAY100635; 0.1 mg/kg/day) reduced fluoxetine-induced modulation of CB1 receptor coupling to Gα subunits and AC in the PFC but not in the cerebellum. These results indicate that increased CB1 receptor signaling at the Gαi-AC transduction level is a long-term adaptation induced by fluoxetine in the PFC and point to a role for 5-HT1A receptors in this effect. Basal AC activity, protein kinase A (PKA) catalytic subunit expression, and phospho-cAMP response element-binding protein (pCREB)/CREB ratio were also up-regulated in the PFC of fluoxetine-treated animals, whereas no differences were detected in the cerebellum. It is interesting that long-term Δ9-tetrahydrocannabinol treatment did not elicit antidepressant-like effects or modulated behavioral responses of fluoxetine in an animal model of depression (olfactory bulbectomy). These data suggest that altered signal transduction through CB1 receptors in the PFC may participate in the regulation of the AC-PKA-CREB cascade induced by fluoxetine in this brain area.


Neural Plasticity | 2013

Neural Plasticity and Proliferation in the Generation of Antidepressant Effects: Hippocampal Implication

Fuencisla Pilar-Cuéllar; Rebeca Vidal; Álvaro Díaz; Elena Castro; Severiano dos Anjos; Jesús Pascual-Brazo; Raquel Linge; Verónica Inés Vargas; Helena Blanco; Beatriz Martínez-Villayandre; Angel Pazos; Elsa M. Valdizán

It is widely accepted that changes underlying depression and antidepressant-like effects involve not only alterations in the levels of neurotransmitters as monoamines and their receptors in the brain, but also structural and functional changes far beyond. During the last two decades, emerging theories are providing new explanations about the neurobiology of depression and the mechanism of action of antidepressant strategies based on cellular changes at the CNS level. The neurotrophic/plasticity hypothesis of depression, proposed more than a decade ago, is now supported by multiple basic and clinical studies focused on the role of intracellular-signalling cascades that govern neural proliferation and plasticity. Herein, we review the state-of-the-art of the changes in these signalling pathways which appear to underlie both depressive disorders and antidepressant actions. We will especially focus on the hippocampal cellularity and plasticity modulation by serotonin, trophic factors as brain-derived neurotrophic factor (BDNF), and vascular endothelial growth factor (VEGF) through intracellular signalling pathways—cAMP, Wnt/β-catenin, and mTOR. Connecting the classic monoaminergic hypothesis with proliferation/neuroplasticity-related evidence is an appealing and comprehensive attempt for improving our knowledge about the neurobiological events leading to depression and associated to antidepressant therapies.


Cancer Cell | 2015

Small molecule inhibition of ERK dimerization prevents tumorigenesis by RAS-ERK pathway oncogenes

Ana M. Herrero; Adán Pinto; Paula Colón-Bolea; Berta Casar; Mary Jones; Lorena Agudo-Ibáñez; Rebeca Vidal; Stephan P. Tenbaum; Paolo Nuciforo; Elsa M. Valdizán; Zoltán Horváth; Laszlo Orfi; Antonio Pineda-Lucena; Emilie Bony; György Kéri; Germán Rivas; Angel Pazos; Rafael Gozalbes; Héctor G. Pálmer; Adam Hurlstone; Piero Crespo

Nearly 50% of human malignancies exhibit unregulated RAS-ERK signaling; inhibiting it is a valid strategy for antineoplastic intervention. Upon activation, ERK dimerize, which is essential for ERK extranuclear, but not for nuclear, signaling. Here, we describe a small molecule inhibitor for ERK dimerization that, without affecting ERK phosphorylation, forestalls tumorigenesis driven by RAS-ERK pathway oncogenes. This compound is unaffected by resistance mechanisms that hamper classical RAS-ERK pathway inhibitors. Thus, ERK dimerization inhibitors provide the proof of principle for two understudied concepts in cancer therapy: (1) the blockade of sub-localization-specific sub-signals, rather than total signals, as a means of impeding oncogenic RAS-ERK signaling and (2) targeting regulatory protein-protein interactions, rather than catalytic activities, as an approach for producing effective antitumor agents.


Journal of Neurochemistry | 2009

Long-term treatment with fluoxetine induces desensitization of 5-HT4 receptor―dependent signalling and functionality in rat brain

Rebeca Vidal; Elsa M. Valdizán; Ricardo Mostany; Angel Pazos; Elena Castro

The mode of action of antidepressant drugs may be related to mechanisms of monoamines receptor adaptation, including serotonin 5‐HT4 receptor subtypes. Here we investigated the effects of repeated treatment with the selective serotonin reuptake inhibitor fluoxetine for 21 days (5 and 10 mg/kg, p.o., once daily) on the sensitivity of 5‐HT4 receptors by using receptor autoradiography, adenylate cyclase assays and extracellular recording techniques in rat brain. Fluoxetine treatment decreased the density of 5‐HT4 receptor binding in the CA1 field of hippocampus as well as in several areas of the striatum over the doses of 5–10 mg/kg. In a similar way, we found a significant lower response to zacopride‐stimulated adenylate cyclase activity in the fluoxetine 10 mg/kg/day treated group. Furthermore, post‐synaptic 5‐HT4 receptor activity in hippocampus‐measured as the excitatory action of zacopride in the pyramidal cells of CA1 evoked by Schaffer collateral stimulation was attenuated in rats treated with both doses of fluoxetine. Taken together, these results support the concept that a net decrease in the signalization pathway of 5‐HT4 receptors occurs after chronic selective serotonin reuptake inhibitor treatment: this effect may underlie the therapeutic efficacy of these drugs.


PLOS ONE | 2014

Overexpression of Dyrk1A Is Implicated in Several Cognitive, Electrophysiological and Neuromorphological Alterations Found in a Mouse Model of Down Syndrome

Susana García-Cerro; Paula Martínez; Verónica Vidal; Andrea Corrales; Jesús Flórez; Rebeca Vidal; Noemí Rueda; Maria L. Arbonés; Carmen Martínez-Cué

Down syndrome (DS) phenotypes result from the overexpression of several dosage-sensitive genes. The DYRK1A (dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A) gene, which has been implicated in the behavioral and neuronal alterations that are characteristic of DS, plays a role in neuronal progenitor proliferation, neuronal differentiation and long-term potentiation (LTP) mechanisms that contribute to the cognitive deficits found in DS. The purpose of this study was to evaluate the effect of Dyrk1A overexpression on the behavioral and cognitive alterations in the Ts65Dn (TS) mouse model, which is the most commonly utilized mouse model of DS, as well as on several neuromorphological and electrophysiological properties proposed to underlie these deficits. In this study, we analyzed the phenotypic differences in the progeny obtained from crosses of TS females and heterozygous Dyrk1A (+/−) male mice. Our results revealed that normalization of the Dyrk1A copy number in TS mice improved working and reference memory based on the Morris water maze and contextual conditioning based on the fear conditioning test and rescued hippocampal LTP. Concomitant with these functional improvements, normalization of the Dyrk1A expression level in TS mice restored the proliferation and differentiation of hippocampal cells in the adult dentate gyrus (DG) and the density of GABAergic and glutamatergic synapse markers in the molecular layer of the hippocampus. However, normalization of the Dyrk1A gene dosage did not affect other structural (e.g., the density of mature hippocampal granule cells, the DG volume and the subgranular zone area) or behavioral (i.e., hyperactivity/attention) alterations found in the TS mouse. These results suggest that Dyrk1A overexpression is involved in some of the cognitive, electrophysiological and neuromorphological alterations, but not in the structural alterations found in DS, and suggest that pharmacological strategies targeting this gene may improve the treatment of DS-associated learning disabilities.


The International Journal of Neuropsychopharmacology | 2012

Modulation of neuroplasticity pathways and antidepressant-like behavioural responses following the short-term (3 and 7 days) administration of the 5-HT4 receptor agonist RS67333

Jesús Pascual-Brazo; Elena Castro; Álvaro Díaz; Elsa M. Valdizán; Fuencisla Pilar-Cuéllar; Rebeca Vidal; Begoña Treceño; Angel Pazos

It has been recently suggested that activation of 5-HT₄ receptors might exert antidepressant-like effects in rats after 3 d treatment, suggesting a new strategy for developing faster-acting antidepressants. We studied the effects of 3 d and 7 d treatment with the 5-HT₄ receptor partial agonist RS67333 (1.5 mg/kg.d) in behavioural tests of chronic efficacy and on neuroplastic-associated changes, such as adult hippocampal neurogenesis, expression of CREB, BDNF, β-catenin, AKT and 5-HT₄ receptor functionality. RS67333 treatment up-regulated hippocampal cell proliferation, β-catenin expression and pCREB/CREB ratio after 3 d treatment. This short-term treatment also reduced immobility time in the forced swim test (FST), together with a partial reversion of the anhedonic-like state (sucrose consumption after chronic corticosterone). Administration of RS67333 for 7 d resulted in a higher increase in the rate of hippocampal cell proliferation, a significant desensitization of 5-HT₄ receptor-coupled adenylate cyclase activity and a more marked increase in the expression of neuroplasticity-related proteins (BDNF, CREB, AKT): these changes reached the same magnitude as those observed after 3 wk administration of classical antidepressants. Consistently, a positive behavioural response in the novelty suppressed feeding (NSF) test and a complete reversion of the anhedonic-like state (sucrose consumption) were also observed after 7 d treatment. These results support the antidepressant-like profile of RS67333 with a shorter onset of action and suggest that this time period of administration (3-7 d) could be a good approximation to experimentally predict the onset of action of this promising strategy.


British Journal of Pharmacology | 2012

Subchronic treatment with fluoxetine and ketanserin increases hippocampal brain-derived neurotrophic factor, β-catenin and antidepressant-like effects.

Fuencisla Pilar-Cuéllar; Rebeca Vidal; Angel Pazos

5‐HT2A receptor antagonists improve antidepressant responses when added to 5‐HT‐selective reuptake inhibitors (SSRIs) or tricyclic antidepressants. Here, we have studied the involvement of neuroplasticity pathways and/or the 5‐hydroxytryptaminergic system in the antidepressant‐like effect of this combined treatment, given subchronically.


Translational Psychiatry | 2013

RNAi-mediated serotonin transporter suppression rapidly increases serotonergic neurotransmission and hippocampal neurogenesis.

A Ferrés-Coy; Fuencisla Pilar-Cuéllar; Rebeca Vidal; V Paz; M Masana; R Cortés; M C Carmona; L Campa; Angel Pazos; A Montefeltro; Elsa M. Valdizán; F Artigas; A Bortolozzi

Current antidepressants, which inhibit the serotonin transporter (SERT), display limited efficacy and slow onset of action. Here, we show that partial reduction of SERT expression by small interference RNA (SERT-siRNA) decreased immobility in the tail suspension test, displaying an antidepressant potential. Moreover, short-term SERT-siRNA treatment modified mouse brain variables considered to be key markers of antidepressant action: reduced expression and function of 5-HT1A-autoreceptors, elevated extracellular serotonin in forebrain and increased neurogenesis and expression of plasticity-related genes (BDNF, VEGF, Arc) in hippocampus. Remarkably, these effects occurred much earlier and were of greater magnitude than those evoked by long-term fluoxetine treatment. These findings highlight the critical role of SERT in serotonergic function and show that the reduction of SERT expression regulates serotonergic neurotransmission more potently than pharmacological blockade of SERT. The use of siRNA-targeting genes in serotonin neurons (SERT, 5-HT1A-autoreceptor) may be a novel therapeutic strategy to develop fast-acting antidepressants.


Journal of Pineal Research | 2014

Chronic melatonin treatment rescues electrophysiological and neuromorphological deficits in a mouse model of Down syndrome

Andrea Corrales; Rebeca Vidal; Susana Truchuelo García; Verónica Vidal; Paula Martínez; Eva María del Pozo García; Jesús Flórez; Emilio J. Sánchez-Barceló; Carmen Martínez-Cué; Noemí Rueda

The Ts65Dn mouse (TS), the most commonly used model of Down syndrome (DS), exhibits several key phenotypic characteristics of this condition. In particular, these animals present hypocellularity in different areas of their CNS due to impaired neurogenesis and have alterations in synaptic plasticity that compromise their cognitive performance. In addition, increases in oxidative stress during adulthood contribute to the age‐related progression of cognitive and neuronal deterioration. We have previously demonstrated that chronic melatonin treatment improves learning and memory and reduces cholinergic neurodegeneration in TS mice. However, the molecular and physiological mechanisms that mediate these beneficial cognitive effects are not yet fully understood. In this study, we analyzed the effects of chronic melatonin treatment on different mechanisms that have been proposed to underlie the cognitive impairments observed in TS mice: reduced neurogenesis, altered synaptic plasticity, enhanced synaptic inhibition and oxidative damage. Chronic melatonin treatment rescued both impaired adult neurogenesis and the decreased density of hippocampal granule cells in trisomic mice. In addition, melatonin administration reduced synaptic inhibition in TS mice by increasing the density and/or activity of glutamatergic synapses in the hippocampus. These effects were accompanied by a full recovery of hippocampal LTP in trisomic animals. Finally, melatonin treatment decreased the levels of lipid peroxidation in the hippocampus of TS mice. These results indicate that the cognitive‐enhancing effects of melatonin in adult TS mice could be mediated by the normalization of their electrophysiological and neuromorphological abnormalities and suggest that melatonin represents an effective treatment in retarding the progression of DS neuropathology.

Collaboration


Dive into the Rebeca Vidal's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elena Castro

University of Cantabria

View shared research outputs
Top Co-Authors

Avatar

Fuencisla Pilar-Cuéllar

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ángel Pazos

University of Cantabria

View shared research outputs
Top Co-Authors

Avatar

Angel Pazos

University of Cantabria

View shared research outputs
Top Co-Authors

Avatar

Ángel Pazos

University of Cantabria

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Raquel Linge

Instituto de Salud Carlos III

View shared research outputs
Top Co-Authors

Avatar

Albert Ferrés-Coy

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge