Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rebecca D. Parr is active.

Publication


Featured researches published by Rebecca D. Parr.


Journal of Virology | 2006

The Rotavirus Enterotoxin NSP4 Directly Interacts with the Caveolar Structural Protein Caveolin-1

Rebecca D. Parr; Stephen M. Storey; Deanne M. Mitchell; Avery L. McIntosh; Minglong Zhou; Kiran D. Mir; Judith M. Ball

ABSTRACT Rotavirus nonstructural protein 4 (NSP4) is known to function as an intracellular receptor at the endoplasmic reticulum (ER) critical to viral morphogenesis and is the first characterized viral enterotoxin. Exogenously added NSP4 induces diarrhea in rodent pups and stimulates secretory chloride currents across intestinal segments as measured in Ussing chambers. Circular dichroism studies further reveal that intact NSP4 and the enterotoxic peptide (NSP4114-135) that is located within the extended, C-terminal amphipathic helix preferentially interact with caveola-like model membranes. We now show colocalization of NSP4 and caveolin-1 in NSP4-transfected and rotavirus-infected mammalian cells in reticular structures surrounding the nucleus (likely ER), in the cytosol, and at the cell periphery by laser scanning confocal microscopy. A direct interaction between NSP4 residues 112 to 140 and caveolin-1 was determined by the Pro-Quest yeast two-hybrid system with full-length NSP4 and seven overlapping deletion mutants as bait, caveolin-1 as prey, and vice versa. Coimmunoprecipitation of NSP4-caveolin-1 complexes from rotavirus-infected mammalian cells demonstrated that the interaction occurs during viral infection. Finally, binding of caveolin-1 from mammalian cell lysates to Sepharose-bound, NSP4-specific synthetic peptides confirmed the yeast two-hybrid data and further delineated the binding domain to amino acids 114 to 135. We propose that the association of NSP4 and caveolin-1 contributes to NSP4 intracellular trafficking from the ER to the cell surface and speculate that exogenously added NSP4 stimulates signaling molecules located in caveola microdomains.


Journal of Virology | 2007

Full-Length, Glycosylated NSP4 Is Localized to Plasma Membrane Caveolae by a Novel Raft Isolation Technique

Stephen M. Storey; Thomas F. Gibbons; Cecelia V Williams; Rebecca D. Parr; Friedhelm Schroeder; Judith M. Ball

ABSTRACT Rotavirus NSP4, initially characterized as an endoplasmic reticulum intracellular receptor, is a multifunctional viral enterotoxin that induces diarrhea in murine pups. There have been recent reports of the secretion of a cleaved NSP4 fragment (residues 112 to 175) and of the association of NSP4 with LC3-positive autophagosomes, raft membranes, and microtubules. To determine if NSP4 traffics to a specific subset of rafts at the plasma membrane, we isolated caveolae from plasma membrane-enriched material that yielded caveola membranes free of endoplasmic reticulum and nonraft plasma membrane markers. Analyses of the newly isolated caveolae from rotavirus-infected MDCK cells revealed full-length, high-mannose glycosylated NSP4. The lack of Golgi network-specific processing of the caveolar NSP4 glycans supports studies showing that NSP4 bypasses the Golgi apparatus. Confocal imaging showed the colocalization of NSP4 with caveolin-1 early and late in infection, elucidating the temporal and spatial NSP4-caveolin-1 association during infection. These data were extended with fluorescent resonance energy transfer analyses that confirmed the NSP4 and caveolin-1 interaction in that the specific fluorescently tagged antibodies were within 10 nm of each other during infection. Cells transfected with NSP4 showed patterns of staining and colocalization with caveolin-1 similar to those of infected cells. This study presents an endoplasmic reticulum contaminant-free caveola isolation protocol; describes the presence of full-length, endoglycosidase H-sensitive NSP4 in plasma membrane caveolae; provides confirmation of the NSP4-caveolin interaction in the presence and absence of other viral proteins; and provides a final plasma membrane destination for Golgi network-bypassing NSP4 transport.


Plasmid | 2003

New donor vector for generation of histidine-tagged fusion proteins using the Gateway Cloning System

Rebecca D. Parr; Judith M. Ball

An optimized donor/shuttle vector, pENTR-His-ccdB, was generated that readily produces a histidine-tagged recombinant protein in multiple expression systems using Gateway Technology. In the current Gateway System, six histidines and the tobacco etch virus protease cleavage site are encoded upstream of the attR1 recombination site such that the histidine-tagged destination/expression vector adds 15 residues to the amino-terminus of recombinant proteins. Our new vector introduces the histidine tag at the donor level and places the multiple cloning sites within the attL recombination sites producing cleavable histidine-tagged proteins with a short, neutral linker of five residues. Two histidine-tagged clones were produced and fusion proteins expressed using the newly engineered vector.


Virology Journal | 2011

Rotavirus NSP4: Cell type-dependent transport kinetics to the exofacial plasma membrane and release from intact infected cells

Thomas F. Gibbons; Stephen M. Storey; Cecelia V Williams; Avery L. McIntosh; DeAnne M Mitchel; Rebecca D. Parr; Megan E. Schroeder; Friedhelm Schroeder; Judith M. Ball

BackgroundRotavirus NSP4 localizes to multiple intracellular sites and is multifunctional, contributing to RV morphogenesis, replication and pathogenesis. One function of NSP4 is the induction of early secretory diarrhea by binding surface receptors to initiate signaling events. The aims of this study were to determine the transport kinetics of NSP4 to the exofacial plasma membrane (PM), the subsequent release from intact infected cells, and rebinding to naïve and/or neighboring cells in two cell types.MethodsTransport kinetics was evaluated using surface-specific biotinylation/streptavidin pull-downs and exofacial exposure of NSP4 was confirmed by antibody binding to intact cells, and fluorescent resonant energy transfer. Transfected cells similarly were monitored to discern NSP4 movement in the absence of infection or other viral proteins. Endoglycosidase H digestions, preparation of CY3- or CY5- labeled F(ab)2 fragments, confocal imaging, and determination of preferential polarized transport employed standard laboratory techniques. Mock-infected, mock-biotinylated and non-specific antibodies served as controls.ResultsOnly full-length (FL), endoglycosidase-sensitive NSP4 was detected on the exofacial surface of two cell types, whereas the corresponding cell lysates showed multiple glycosylated forms. The C-terminus of FL NSP4 was detected on exofacial-membrane surfaces at different times in different cell types prior to its release into culture media. Transport to the PM was rapid and distinct yet FL NSP4 was secreted from both cell types at a time similar to the release of virus. NSP4-containing, clarified media from both cells bound surface molecules of naïve cells, and imaging showed secreted NSP4 from one or more infected cells bound neighboring cell membranes in culture. Preferential sorting to apical or basolateral membranes also was distinct in different polarized cells.ConclusionsThe intracellular transport of NSP4 to the PM, translocation across the PM, exposure of the C-terminus on the cell surface and subsequent secretion occurs via an unusual, complex and likely cell-dependent process. The exofacial exposure of the C-terminus poses several questions and suggests an atypical mechanism by which NSP4 traverses the PM and interacts with membrane lipids. Mechanistic details of the unconventional trafficking of NSP4, interactions with host-cell specific molecules and subsequent release require additional study.


Advances in Virology | 2015

Investigation of Stilbenoids as Potential Therapeutic Agents for Rotavirus Gastroenteritis

Judith M. Ball; Fabricio Medina-Bolivar; Katelyn D. Defrates; Emily Hambleton; Megan E. Hurlburt; Lingling Fang; Tianhong Yang; Luis Nopo-Olazabal; Richard L. Atwill; Pooj Ghai; Rebecca D. Parr

Rotavirus (RV) infections cause severe diarrhea in infants and young children worldwide. Vaccines are available but cost prohibitive for many countries and only reduce severe symptoms. Vaccinated infants continue to shed infectious particles, and studies show decreased efficacy of the RV vaccines in tropical and subtropical countries where they are needed most. Continuing surveillance for new RV strains, assessment of vaccine efficacy, and development of cost effective antiviral drugs remain an important aspect of RV studies. This study was to determine the efficacy of antioxidant and anti-inflammatory stilbenoids to inhibit RV replication. Peanut (A. hypogaea) hairy root cultures were induced to produce stilbenoids, which were purified by high performance countercurrent chromatography (HPCCC) and analyzed by HPLC. HT29.f8 cells were infected with RV in the presence stilbenoids. Cell viability counts showed no cytotoxic effects on HT29.f8 cells. Viral infectivity titers were calculated and comparatively assessed to determine the effects of stilbenoid treatments. Two stilbenoids, trans-arachidin-1 and trans-arachidin-3, show a significant decrease in RV infectivity titers. Western blot analyses performed on the infected cell lysates complemented the infectivity titrations and indicated a significant decrease in viral replication. These studies show the therapeutic potential of the stilbenoids against RV replication.


Virology Journal | 2013

Mutational Analysis of the Rotavirus NSP4 Enterotoxic Domain that Binds to Caveolin-1

Judith M. Ball; Megan E. Schroeder; Cecelia V Williams; Friedhelm Schroeder; Rebecca D. Parr

BackgroundRotavirus (RV) nonstructural protein 4 (NSP4) is the first described viral enterotoxin, which induces early secretory diarrhea in neonatal rodents. Our previous data show a direct interaction between RV NSP4 and the structural protein of caveolae, caveolin-1 (cav-1), in yeast and mammalian cells. The binding site of cav-1 mapped to the NSP4 amphipathic helix, and led us to examine which helical face was responsible for the interaction.MethodsA panel of NSP4 mutants were prepared and tested for binding to cav-1 by yeast two hybrid and direct binding assays. The charged residues of the NSP4 amphipathic helix were changed to alanine (NSP446-175-ala6); and three residues in the hydrophobic face were altered to charged amino acids (NSP446-175-HydroMut). In total, twelve mutants of NSP4 were generated to define the cav-1 binding site. Synthetic peptides corresponding to the hydrophobic and charged faces of NSP4 were examined for structural changes by circular dichroism (CD) and diarrhea induction by a neonatal mouse study.ResultsMutations of the hydrophilic face (NSP446-175-Ala6) bound cav-1 akin to wild type NSP4. In contrast, disruption of the hydrophobic face (NSP446-175-HydroMut) failed to bind cav-1. These data suggest NSP4 and cav-1 associate via a hydrophobic interaction. Analyses of mutant synthetic peptides in which the hydrophobic residues in the enterotoxic domain of NSP4 were altered suggested a critical hydrophobic residue. Both NSP4HydroMut112-140, that contains three charged amino acids (aa113, 124, 131) changed from the original hydrophobic residues and NSP4AlaAcidic112-140 that contained three alanine residues substituted for negatively charged (aa114, 125, 132) amino acids failed to induce diarrhea. Whereas peptides NSP4wild type 112−140 and NSP4AlaBasic112-140 that contained three alanine substituted for positively charged (aa115, 119, 133) amino acids, induced diarrhea.ConclusionsThese data show that the cav-1 binding domain is within the hydrophobic face of the NSP4 amphipathic helix. The integrity of the helical structure is important for both cav-1 binding and diarrhea induction implying a connection between NSP4 functional and binding activities.


Virology | 1998

Autographa californicaNucleopolyhedrovirus Infection Results in Sf9 Cell Cycle Arrest at G2/M Phase☆☆☆

Sharon C. Braunagel; Rebecca D. Parr; Michail Belyavskyi; Max D. Summers


Viral Immunology | 2005

Rotavirus NSP4: a multifunctional viral enterotoxin.

Judith M. Ball; Deanne M. Mitchell; Thomas F. Gibbons; Rebecca D. Parr


Nucleic Acids Research | 2003

Site‐selective in vivo targeting of cytosine‐5 DNA methylation by zinc‐finger proteins

Christopher D. Carvin; Rebecca D. Parr; Michael P. Kladde


Biochimica et Biophysica Acta | 2007

Sterol carrier protein-2: New roles in regulating lipid rafts and signaling

Friedhelm Schroeder; Barbara P. Atshaves; Avery L. McIntosh; Adalberto M. Gallegos; Stephen M. Storey; Rebecca D. Parr; John R. Jefferson; Judith M. Ball; Ann B. Kier

Collaboration


Dive into the Rebecca D. Parr's collaboration.

Top Co-Authors

Avatar

Judith M. Ball

Stephen F. Austin State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kiran D. Mir

University of Texas Southwestern Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge