Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rebecca Garabed is active.

Publication


Featured researches published by Rebecca Garabed.


Transboundary and Emerging Diseases | 2016

Serotype Diversity of Foot‐and‐Mouth‐Disease Virus in Livestock without History of Vaccination in the Far North Region of Cameroon

A. Ludi; Z. Ahmed; Laura W. Pomeroy; Steven J. Pauszek; G. R. Smoliga; Mark Moritz; S. Dickmu; S. Abdoulkadiri; Jonathan Arzt; Rebecca Garabed; Luis L. Rodriguez

Little information is available about the natural cycle of foot-and-mouth disease (FMD) in the absence of control measures such as vaccination. Cameroon presents a unique opportunity for epidemiological studies because FMD vaccination is not practiced. We carried out a prospective study including serological, antigenic and genetic aspects of FMD virus (FMDV) infections among different livestock production systems in the Far North of Cameroon to gain insight into the natural ecology of the virus. We found serological evidence of FMDV infection in over 75% of the animals sampled with no significant differences of prevalence observed among the sampled groups (i.e. market, sedentary, transboundary trade and mobile). We also found antibodies reactive to five of the seven FMDV serotypes (A, O, SAT1, SAT2 and SAT3) among the animals sampled. Finally, we were able to genetically characterize viruses obtained from clinical and subclinical FMD infections in Cameroon. Serotype O viruses grouped into two topotypes (West and East Africa). SAT2 viruses grouped with viruses from Central and Northern Africa, notably within the sublineage causing the large epidemic in Northern Africa in 2012, suggesting a common origin for these viruses. This research will guide future interventions for the control of FMD such as improved diagnostics, guidance for vaccine formulation and epidemiological understanding in support of the progressive control of FMD in Cameroon.


PLOS ONE | 2015

Spatial and Temporal Characteristics of Pastoral Mobility in the Far North Region, Cameroon: Data Analysis and Modeling

Ningchuan Xiao; Shanshan Cai; Mark Moritz; Rebecca Garabed; Laura W. Pomeroy

Modeling the movements of humans and animals is critical to understanding the transmission of infectious diseases in complex social and ecological systems. In this paper, we focus on the movements of pastoralists in the Far North Region of Cameroon, who follow an annual transhumance by moving between rainy and dry season pastures. Describing, summarizing, and modeling the transhumance movements in the region are important steps for understanding the role these movements may play in the transmission of infectious diseases affecting humans and animals. We collected data on this transhumance system for four years using a combination of surveys and GPS mapping. An analysis on the spatial and temporal characteristics of pastoral mobility suggests four transhumance modes, each with its own properties. Modes M1 and M2 represent the type of transhumance movements where pastoralists settle in a campsite for a relatively long period of time (≥20 days) and then move around the area without specific directions within a seasonal grazing area. Modes M3 and M4 on the other hand are the situations when pastoralists stay in a campsite for a relatively short period of time (<20 days) when moving between seasonal grazing areas. These four modes are used to develop a spatial-temporal mobility (STM) model that can be used to estimate the probability of a mobile pastoralist residing at a location at any time. We compare the STM model with two reference models and the experiments suggest that the STM model can effectively capture and predict the space-time dynamics of pastoral mobility in our study area.


PLOS ONE | 2015

Serotype-Specific Transmission and Waning Immunity of Endemic Foot-and-Mouth Disease Virus in Cameroon

Laura W. Pomeroy; Ottar N. Bjørnstad; Hyeyoung Kim; Simon Dickmu Jumbo; Souley Abdoulkadiri; Rebecca Garabed

Foot-and-mouth disease virus (FMDV) causes morbidity and mortality in a range of animals and threatens local economies by acting as a barrier to international trade. The outbreak in the United Kingdom in 2001 that cost billions to control highlighted the risk that the pathogen poses to agriculture. In response, several mathematical models have been developed to parameterize and predict both transmission dynamics and optimal disease control. However, a lack of understanding of the multi-strain etiology prevents characterization of multi-strain dynamics. Here, we use data from FMDV serology in an endemic setting to probe strain-specific transmission and immunodynamics. Five serotypes of FMDV affect cattle in the Far North Region of Cameroon. We fit both catalytic and reverse catalytic models to serological data to estimate the force of infection and the rate of waning immunity, and to detect periods of sustained transmission. For serotypes SAT2, SAT3, and type A, a model assuming life-long immunity fit better. For serotypes SAT1 and type O, the better-fit model suggests that immunity may wane over time. Our analysis further indicates that type O has the greatest force of infection and the longest duration of immunity. Estimates for the force of infection were time-varying and indicated that serotypes SAT1 and O displayed endemic dynamics, serotype A displayed epidemic dynamics, and SAT2 and SAT3 did not sustain local chains of transmission. Since these results were obtained from the same population at the same time, they highlight important differences in transmission specific to each serotype. They also show that immunity wanes at rates specific to each serotype, which influences patterns of local persistence. Overall, this work shows that viral serotypes can differ significantly in their epidemiological and immunological characteristics. Patterns and processes that drive transmission in endemic settings must consider complex viral dynamics for accurate representation and interpretation.


Transboundary and Emerging Diseases | 2017

Data‐Driven Models of Foot‐and‐Mouth Disease Dynamics: A Review

Laura W. Pomeroy; S. Bansal; M. Tildesley; K. I. Moreno-Torres; Mark Moritz; Ningchuan Xiao; T. E. Carpenter; Rebecca Garabed

Foot-and-mouth disease virus (FMDV) threatens animal health and leads to considerable economic losses worldwide. Progress towards minimizing both veterinary and financial impact of the disease will be made with targeted disease control policies. To move towards targeted control, specific targets and detailed control strategies must be defined. One approach for identifying targets is to use mathematical and simulation models quantified with accurate and fine-scale data to design and evaluate alternative control policies. Nevertheless, published models of FMDV vary in modelling techniques and resolution of data incorporated. In order to determine which models and data sources contain enough detail to represent realistic control policy alternatives, we performed a systematic literature review of all FMDV dynamical models that use host data, disease data or both data types. For the purpose of evaluating modelling methodology, we classified models by control strategy represented, resolution of models and data, and location modelled. We found that modelling methodology has been well developed to the point where multiple methods are available to represent detailed and contact-specific transmission and targeted control. However, detailed host and disease data needed to quantify these models are only available from a few outbreaks. To address existing challenges in data collection, novel data sources should be considered and integrated into models of FMDV transmission and control. We suggest modelling multiple endemic areas to advance local control and global control and better understand FMDV transmission dynamics. With incorporation of additional data, models can assist with both the design of targeted control and identification of transmission drivers across geographic boundaries.


International Journal of Environmental Research and Public Health | 2014

Muddying the Waters: A New Area of Concern for Drinking Water Contamination in Cameroon

Jessica M. Healy Profitós; Arabi Mouhaman; Seungjun Lee; Rebecca Garabed; Mark Moritz; Barbara A. Piperata; Joseph H. Tien; Michael S. Bisesi; Jiyoung Lee

In urban Maroua, Cameroon, improved drinking water sources are available to a large majority of the population, yet this water is frequently distributed through informal distribution systems and stored in home containers (canaries), leaving it vulnerable to contamination. We assessed where contamination occurs within the distribution system, determined potential sources of environmental contamination, and investigated potential pathogens. Gastrointestinal health status (785 individuals) was collected via health surveys. Drinking water samples were collected from drinking water sources and canaries. Escherichia coli and total coliform levels were evaluated and molecular detection was performed to measure human-associated faecal marker, HF183; tetracycline-resistance gene, tetQ; Campylobacter spp.; and Staphylococcus aureus. Statistical analyses were performed to evaluate the relationship between microbial contamination and gastrointestinal illness. Canari samples had higher levels of contamination than source samples. HF183 and tetQ were detected in home and source samples. An inverse relationship was found between tetQ and E. coli. Presence of tetQ with lower E. coli levels increased the odds of reported diarrhoeal illness than E. coli levels alone. Further work is warranted to better assess the relationship between antimicrobial-resistant bacteria and other pathogens in micro-ecosystems within canaries and this relationship’s impact on drinking water quality.


Transboundary and Emerging Diseases | 2009

Analytical Epidemiology of Genomic Variation among Pan Asia Strains of Foot‐and‐Mouth Disease Virus

Rebecca Garabed; W. O. Johnson; Mark C. Thurmond

Genetic data from field isolates of foot-and-mouth disease virus (FMDV) have been used to trace the source of recent outbreaks of FMD, to design better vaccines and diagnostic tests for FMDV, and to make conclusions regarding the general variability in the FMDV genome. Though epidemiologic data associated with FMDV isolates are available, these data have been used rarely to explore possible associations of epidemiologic factors with evolution or variation of the FMDV genome. In this study, factors associated with variation in the primary immunogenic peptide gene of FMDV (VP1), for a sample of 147 serotype O, Pan Asia strain sequences were explored using traditional analytical epidemiologic methods: logistic regression and multinomial-response logistic regression. Hypothesized factors included host type (bovine, ovine, buffalo, or porcine) and geographical region (Middle East, South Asia, East Asia, Southeast Asia, and Europe). Results of two regression analyses suggest that host type and region, considered to be possible surrogates for host management, may be associated with selection in the VP1 amino acid sequence in FMDV. For example, isolates from cattle and sheep in South Asia appear to converge with a proposed ancestor sequence, whereas isolates from the same species in the Middle East and Southeast Asia appear to diverge. The methods demonstrated here could be used on a more detailed dataset to explore the selective pressure of host immunity on the evolution of FMDV antigens in an endemic setting. More broadly, epidemiologic methods could be applied extensively to molecular data to explore the causes of genomic variation in disease-causing organisms.


International Journal of Environmental Research and Public Health | 2017

Water Access, Sanitation, and Hygiene Conditions and Health Outcomes among Two Settlement Types in Rural Far North Cameroon

Tyler Gorham; Joshua Yoo; Rebecca Garabed; Arabi Mouhaman; Jiyoung Lee

The Far North region in Cameroon has been more heavily impacted by cholera than any other region over the past decade, but very little has been done to study the drivers of waterborne diseases in the region. We investigated the relationship between water, sanitation, and hygiene (WASH) parameters, microbial and antibiotic resistance (AR) contamination levels in drinking water, and health outcomes using health survey and molecular analysis during June and July of 2014 in two settlement types (agro-pastoralist villages and transhumant pastoralist camps). Quantitative polymerase chain reaction was used to determine fecal contamination sources, enteric pathogens, and antibiotic resistance genes. Ruminant-associated fecal contamination was widespread in both settlement types (81.2%), with human-associated contamination detected in 21.7% of the samples. Salmonella spp. (59.4%) and Shiga toxin-producing E. coli (stx1 44.9% and stx2 31.9%) were detected across all samples. Tetracycline resistance was found only in village samples. A significant difference in diarrheal incidence within the past 28 days among young children was found between camps (31.3%) and villages (0.0%). Our findings suggest that water contamination may play an important role in contributing to gastrointestinal illness, supporting the need for future research and public health intervention to reduce gastrointestinal illness in the area.


Journal of Water and Health | 2016

Neighborhood diversity of potentially pathogenic bacteria in drinking water from the city of Maroua, Cameroon

Jessica Healy-Profitós; Seungjun Lee; Arabi Mouhaman; Rebecca Garabed; Mark Moritz; Barbara A. Piperata; Jiyoung Lee

This study examined the spatial variation of potential gastrointestinal pathogens within drinking water sources and home storage containers in four neighborhoods in Maroua, Cameroon. Samples were collected from source (n = 28) and home containers (n = 60) in each study neighborhood. Pathogen contamination was assessed using quantitative polymerase chain reaction, targeting Campylobacter spp., Shiga toxin producing Escherichia coli (virulence genes, stx1 and stx2), and Salmonella spp. Microbial source tracking (MST) targeted three different host-specific markers: HF183 (human), Rum2Bac (ruminant) and GFD (poultry) to identify contamination sources. Staphylococcus aureus and the tetracycline-resistance gene (tetQ) were assessed to measure human hand contact and presence of antibiotic-resistant bacteria. Pathogen/MST levels were compared statistically and spatially, and neighborhood variation was compared with previously collected demographic information. All the test fecal markers and pathogens (except Arcobacter) were detected in home and source samples. Two neighborhoods tested positive for most pathogens/MST while the others only tested positive for one or two. Spatial variation of pathogens/MST existed between sources, storage containers, and neighborhoods. Differing population density and ethno-economic characteristics could potentially explain variation. Future research should explore the influence of demographic and ethno-economic factors on water quality during microbial risk assessments in urban Africa.


Journal of Artificial Societies and Social Simulation | 2016

Simulating the Transmission of Foot-And-Mouth Disease Among Mobile Herds in the Far North Region, Cameroon

Hyeyoung Kim; Ningchuan Xiao; Mark Moritz; Rebecca Garabed; Laura W. Pomeroy

Animal and human movements can impact the transmission of infectious diseases. Modeling such impacts presents a significant challenge to disease transmission models because these models often assume a fully mixing population where individuals have an equal chance to contact each other. Whereas movements result in populations that can be best represented as a dynamic networks whose structure changes over time as individual movements result in changing distances between individuals within a population. We model the impact of the movements of mobile pastoralists on foot-and-mouth disease (FMD) transmission in a transhumance system in the Far North Region of Cameroon. The pastoralists in our study area move their livestock between rainy and dry season pastures. We first analyzed transhumance data to derive mobility rules that can be used to simulate the movements of the agents in our model. We developed an agent-based model coupled with a susceptible–infected–recovered (SIR) model. Each agent represents a camp of mobile pastoralists with multiple herds and households. The simulation results demonstrated that the herd mobility significantly influenced the dynamics of FMD. When the grazing area is not explicitly considered (by setting the buffer size to 100 km), all the model simulations suggested the same curves as the results using a fully mixing population. Simulations that used grazing areas observed in the field (≤5 km radius) resulted in multiple epidemic peaks in a year, which is similar to the empirical evidence that we obtained by surveying herders from our study area over the last four years.


Ecology and Evolution | 2016

Estimating Neospora caninum prevalence in wildlife populations using Bayesian inference

Karla I. Moreno-Torres; Barbara A. Wolfe; William J. A. Saville; Rebecca Garabed

Abstract Prevalence of disease in wildlife populations, which is necessary for developing disease models and conducting epidemiologic analyses, is often understudied. Laboratory tests used to screen for diseases in wildlife populations often are validated only for domestic animals. Consequently, the use of these tests for wildlife populations may lead to inaccurate estimates of disease prevalence. We demonstrate the use of Bayesian latent class analysis (LCA) in determining the specificity and sensitivity of a competitive enzyme‐linked immunosorbent assay (cELISA; VMRD ®, Inc.) serologic test used to identify exposure to Neospora caninum (hereafter N. caninum) in three wildlife populations in southeastern Ohio, USA. True prevalence of N. caninum exposure in these populations was estimated to range from 0.1% to 3.1% in American bison (Bison bison), 51.0% to 53.8% in Père Davids deer (Elaphurus davidianus), and 40.0% to 45.9% in white‐tailed deer (Odocoileus virginianus). The accuracy of the cELISA in American bison and Père Davids deer was estimated to be close to the 96% sensitivity and 99% specificity reported by the manufacturer. Sensitivity in white‐tailed deer, however, ranged from 78.9% to 99.9%. Apparent prevalence of N. caninum from the test results is not equal to the true prevalence in white‐tailed deer and Père Davids deer populations. Even when these species inhabit the same community, the true prevalence in the two deer populations differed from the true prevalence in the American bison population. Variances in prevalence for some species suggest differences in the epidemiology of N. caninum for these colocated populations. Bayesian LCA methods could be used as in this example to overcome some of the constraints on validating tests in wildlife species. The ability to accurately evaluate disease status and prevalence in a population improves our understanding of the epidemiology of multihost pathogen systems at the community level.

Collaboration


Dive into the Rebecca Garabed's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge